Vol. 44 No. 3 (2022): Boletín de Geología
Artículos científicos

Characterization of the alteration minerals in domes and pyroclastic deposits of Paipa Geothermal Area, Colombia

Angela Valeria García
Ministerio de Medio Ambiente y Recursos Naturales de El Salvador
John J. Sánchez
Universidad Nacional de Colombia
Elizabeth Torio
LaGeo S.A. de C.V.
Germán E. Bonilla
INCLAY S.A.S.
Andrés I. Rodríguez
MINERLAB LTDA

Published 2022-10-26

Keywords

  • Geothermal system,
  • Seal cap,
  • X-ray diffraction,
  • Clay minerals,
  • Argillic alteration,
  • Hydrothermalism
  • ...More
    Less

How to Cite

García, A. V., Sánchez, J. J. ., Torio, E., Bonilla, G. E., & Rodríguez, A. I. (2022). Characterization of the alteration minerals in domes and pyroclastic deposits of Paipa Geothermal Area, Colombia. Boletín De Geología, 44(3), 219–233. https://doi.org/10.18273/revbol.v44n3-2022010

Altmetrics

Abstract

Hydrothermal alterations are indicators of the interaction of hot fluids with the mineral components of rocks that are: altered, reequilibrated, and transformed into new groups of minerals whose formation temperatures are known; the study of alteration minerals allows identification of active and fossil hydrothermal systems, being a crucial input for the characterization of areas with a potential for exploitation of the heat stored in rocks. In Colombia, the Paipa Geothermal Area (AGP), in the state of Boyacá, is conceived as one of the most promising zones, and this investigation provides details on the mineralogy of alterations. The results of the determination of alteration minerals are presented for three sites within the AGP: ALFAGRES quarry, CEMEX quarry and southeast dome of Alto de los Godos, where the volcanic rocks are associated with the periphery of the seal cap of the geothermal system, constituted also by the clayey levels of Churuvita and Une sedimentary formations. The analysis of 54 samples was conducted by X-Ray Diffraction (XRD) on randomly oriented clay-sized fractions by the smear method, and oriented powder by the glass slide, ethylene glycol solvation, and sample heated to 500°C. Although the following clay mineral phases are common to the three sites: smectite (montmorillonite), halloysite-7Å, kaolinite, and illite, there are also some secondary mineralizations: zeolites (mordenite) and dickite (ALFRAGRES), and chlorite (Alto de Los Godos). Other minerals such as quartz, feldspars, and halloysite-10Å are present in at least two of the sites. The clay minerals from the group of zeolites and kaolin found indicate different stages of advance of the argillic and intermediate argillic alterations; the presence of interstratified illite-smectite (I/S) is related to a state of phyllic alteration. The alterations were caused by hydrothermalism that reached temperatures in the 100-200°C range, being later accentuated and masked by weathering processes.

Downloads

Download data is not yet available.

References

  1. Alfaro, C. (2005). Alteración hidrotermal en el sistema geotérmico de Paipa. Servicio Geológico Colombiano, Bogotá.
  2. Alfaro, C.; Matiz, J.; Rueda-Gutiérrez, J.; Rodríguez, G.; González, C.; Beltrán, M.; Rodríguez, G.; Malo, J. (2017). Actualización del modelo conceptual del Área Geotérmica de Paipa. Bogotá. Servicio Geológico Colombiano.
  3. Bernet, M.; Urueña, C.; Amaya, S.; Peña, M.L. (2016). New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. Journal of Volcanology and Geothermal Research, 327, 299-309. https://doi.org/10.1016/j.jvolgeores.2016.08.013
  4. Brigatti, M.F.; Galan, E.; Theng, B.K.G. (2006). Structures and Mineralogy of Clay Minerals. Developments in Clay Science, 1, 19-86. https://doi.org/10.1016/S1572-4352(05)01002-0
  5. Browne, P. (1984). Lectures on geothermal geology and petrology. Project Report, UNU Geothermal Training Programme, Reykjavik, Iceland.
  6. Carrillo, A.M.; Urruchurto, C.M.; Carriazo, J.G.; Moreno, S.; Molina, R.A. (2014). Caracterización estructural y textural de una haloisita colombiana. Revista Mexicana de Ingeniería Química, 13(2), 563-571.
  7. Cepeda, H.; Pardo, N. (2004). Vulcanismo de Paipa. Servicio Geológico Colombiano, Bogotá.
  8. Chayes, F. (1954). The theory of thin-section analysis. The Journal of Geology, 62(1). https://doi.org/10.1086/626135
  9. Cheng, H.; Yang, J.; Liu, Q.; Zhang, J.; Frost, R. (2010). A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-A mid-infrared and near-infrared study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(4), 856-861. https://doi.org/10.1016/j.saa.2010.08.018
  10. Corbett, G.; Leach, T. (1998). Controls on Hydrothermal Alteration and Mineralization. In: Southwest Pacific Rim gold-copper systems: Structure, alteration, and mineralization (pp. 69-82). Volume 6, Society of Economic Geologists. https://doi.org/10.5382/SP.06
  11. Dong, H.; Peacor, D. (1996). TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for McEwan crystallites and dominance of 2M1 polytypism. Clays and Clay Minerals, 44(1), 257-275. https://doi.org/10.1346/CCMN.1996.0440211
  12. Fulignati, P. (2020). Clay minerals in hydrothermal systems. Minerals, 10(10), 919. https://doi.org/10.3390/min10100919
  13. Garzón, T. (2003). Geoquímica y potencial minero asociado a cuerpos volcánicos en la región de Paipa, departamento de Boyacá, Colombia. Tesis de maestría, Universidad Nacional de Colombia, Bogotá, Colombia.
  14. Gómez, J.; Montes, N. (2020). Mapa Geológico de Colombia 2020. Escala 1:1.000.000. Servicio Geológico Colombiano.
  15. González, L.; Vásquez, L.; Muñoz, R.; Gómez, H.; Parrado, G.; Vargas, S. (2008). Exploración de recursos energéticos, exploración de uranio en Paipa, Iza, Pesca, Chivatá (Boyacá). Servicio Geológico Colombiano, Bogotá.
  16. Harvey, C.; Browne, P. (1991). Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays and Clay Minerals, 39(6), 614-621. https://doi.org/10.1346/CCMN.1991.0390607
  17. Joussein, E.; Petit, S.; Churchman, J.; Theng, J.; Righi, D.; Delvaux, B. (2005). Halloysite clay minerals - a review. Clay Minerals, 40(4), 383-426. https://doi.org/10.1180/0009855054040180
  18. Le Maitre, R.; Streckeisen, A.; Zanettin, B.; Le Bas, M.; Bonin, B.; Bateman, P. (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511535581
  19. Moore, D.; Reynolds, R. (1997). X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press.
  20. Peña, Y. (2016). Evaluación petrológica de las rocas de Paipa, Boyacá. Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.
  21. Pirajno, F. (2009). Hydrothermal processes and mineral systems. Springer.
  22. Rodríguez, G.; Alfaro, C. (2015). Caracterización de núcleos de perforación en las zonas de El Durazno, Paipa y criptodomo de Iza. Servicio Geológico Colombiano. Bogotá.
  23. Rueda-Gutiérrez, J.B. (2017). Cartografía de los cuerpos dómicos del Área Geotérmica de Paipa. Bogotá. Servicio Geológico Colombiano.
  24. Rueda-Gutiérrez, J.B. (2020). Nuevas evidencias del magmatismo asociado con el sistema geotérmico de Paipa, Boyacá, Colombia. Boletín de Geología, 42(3), 51-79. https://doi.org/10.18273/revbol.v42n3-2020002
  25. Stoltman, J. (1989). A quantitative approach to the petrographic analysis of ceramic thin sections. American Antiquity, 54(1), 147-160. https://doi.org/10.2307/281336
  26. Suárez, J. (2016). Mecanismos de transporte y acumulación durante las erupciones piroclásticas más explosivas, registradas al sur de Paipa, en la Cordillera Oriental de Colombia. Tesis, Universidad de los Andes, Bogotá, Colombia.
  27. Thorez, J. (1976). Practical identification of clay minerals: A handbook for teachers and students in clay mineralogy. Lelotte.
  28. Velandia, F. (2003). Cartografía geológica y estructural sector sur del municipio de Paipa. INGEOMINAS, Bogotá.
  29. Wojdyr, M. (2010). Fityk: A general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126-1128. https://doi.org/10.1107/S0021889810030499