Vol. 44 No. 3 (2022): Boletín de Geología
Artículos científicos

Multi-scale modelling for the understanding of flow systems in a layered aquifer, Urabá-Colombia

Jhon Camilo Duque
Universidad de Antioquia
Teresita Betancur
Universidad de Antioquia

Published 2022-10-26

Keywords

  • Groundwater flow,
  • Regional flows,
  • Local flows,
  • Numerical modeling,
  • Hydrogeological conceptual model

How to Cite

Duque, J. C., Betancur , T., & García Aristizábal, E. (2022). Multi-scale modelling for the understanding of flow systems in a layered aquifer, Urabá-Colombia. Boletín De Geología, 44(3), 179–198. https://doi.org/10.18273/revbol.v44n3-2022008

Altmetrics

Abstract

Numerical modelling is a valuable tool which allows the characterisation of groundwater flow behaviour, its interactions, and the representation of different flow systems that occur in an aquifer. A regional-scale model requires general information to describe the flow trends. In contrast, local and intermediate-scale models require a more detailed knowledge of the flow boundaries, and more field information. In order to understand the groundwater flow in the aquifer system of the Eje Bananero del Urabá Antioqueño-Colombia, a multi-scale numerical model was implemented using MODFLOW®. This was performed following modelling protocols on three spatial scales in which the regional model provided the boundary conditions for the intermediate pattern, and the intermediate pattern for the local model. Finally, we represented some details that relate local and intermediate flows to regional flows, in which surface-groundwater interactions involving both shallow and deep ascending flows became evident. The results obtained in this work show the potential of multi-scale modelling as a tool to recognise and understand the groundwater flows in a layered aquifer system, which provide grounds for decision-making and proper management of hydrogeological systems.

Downloads

Download data is not yet available.

References

  1. Ahmed, A.A. (2009). Using lithologic modeling techniques for aquifer characterization and groundwater flow modeling of the Sohag area, Egypt. Hydrogeology Journal, 17(5), 1189-1201. https://doi.org/10.1007/s10040-009-0461-z
  2. Anderson, M.P.; Woessner, W.W. (1992). Applied groundwater modeling simulation of flow and advective transport. Academic Press.
  3. Anderson, M.P.; Woessner, W.W.; Hunt, R.J. (2015). Applied Groundwater Modeling: Simulation of Flow and Advective Transport. 2nd ed. Academic Press. https://doi.org/10.1016/B978-0-08-091638-5.00019-5
  4. Bresciani, E.; Gleeson, T.; Goderniaux, P.; Dreuzy, J.R.; Werner, A.D.; Worman, A.; Zijl, W.; Batelaan, O. (2016). Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition. Hydrogeology Journal, 24(5), 1087-1090. https://doi.org/10.1007/s10040-016-1397-8
  5. Carrera-Hernández, J.J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G. (2016). Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico. Hydrogeology Journal, 24(2), 373-393. https://doi.org/10.1007/s10040-015-1363-x
  6. Carrillo-Rivera, J.J.; Cardona, A. (2012). Groundwater flow systems and their response to Climate change: A need for a water-system view approach. American Journal of Environmental Sciences, 8(3), 220-235. https://doi.org/10.3844/ajessp.2012.220.235
  7. Di Salvo, C.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Capelli, G.; Cavinato, G.P.; Mazza, R. (2012). GIS-based hydrostratigraphic modeling of the city of Rome (Italy): analysis of the geometric relationships between a buried aquifer in the Tiber Valley and the confining hydrostratigraphic complexes. Hydrogeology Journal, 20(8), 1549-1567. https://doi.org/10.1007/s10040-012-0899-2
  8. Environmental Simulations Incorporated (2015). Guide to Using Groundwater Vistas.
  9. Freeze, R.A.; Witherspoon, P.A. (1968). Theoretical analysis of regional ground water flow: 3. Quantitative interpretations. Water Resources Research, 4(3), 581-590. https://doi.org/10.1029/WR004i003p00581
  10. Gebere, A.; Kawo, N.S.; Karuppannan, S.; Hordofa, A.T.; Paron, P. (2021). Numerical modeling of groundwater flow system in the Modjo River catchment, Central Ethiopia. Modeling Earth Systems and Environment, 7(4), 2501-2515. https://doi.org/10.1007/s40808-020-01040-0
  11. Gebreyohannes, T.; De Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, K.; Deckers, J.; Gebrehiwot, K. (2017). Regional groundwater flow modeling of the Geba basin, northern Ethiopia. Hydrogeology Journal, 25(3), 639-655. https://doi.org/10.1007/s10040-016-1522-8
  12. Gleeson, T.; Manning, A.H. (2008). Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 44(10). https://doi.org/10.1029/2008WR006848
  13. Gonçalves, R.D.; Teramoto, E.H.; Chang, H.K. (2020). Regional groundwater modeling of the Guarani Aquifer System. Water, 12(9), 2323. https://doi.org/10.3390/W12092323
  14. INGEOMINAS (1995). Evaluación del agua subterránea en la región de Urabá, Antioquia. Instituto Colombiano de Geología y Minería.
  15. Jiang, X.W.; Wan, L.; Wang, J.Z.; Yin, B.X.; Fu, W.X.; Lin, C.H. (2014). Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophysical Research Letters, 41(8), 2812-2819. https://doi.org/10.1002/2014GL059579
  16. Jiang, X.W.; Wan, L.; Wang, X.S.; Wang, D.; Wang, H.; Wang, J.Z.; Zhang, H.; Zhang, Z.Y.; Zhao, K.Y. (2018). A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeology Journal, 26(5), 1657-1668. https://doi.org/10.1007/s10040-018-1731-4
  17. Joyce, S.; Hartley, L.; Applegate, D.; Hoek, J.; Jackson, P. (2014). Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 22(6), 1233-1249. https://doi.org/10.1007/s10040-014-1165-6
  18. Liao, H.S.; Sampath, P.V.; Curtis, Z.K.; Li, S.G. (2015). Hierarchical modeling of a groundwater remediation capture system. Journal of Hydrology, 527, 196-211. https://doi.org/10.1016/j.jhydrol.2015.04.057
  19. Meesters, A.G.C.A.; Hemker, C.J.; Van den Berg, E.H. (2004). An approximate analytical solution for well flow in anisotropic layered aquifer systems. Journal of Hydrology, 296(1-4), 241-253. https://doi.org/10.1016/j.jhydrol.2004.03.021
  20. Mukherjee, A.; Fryar, A.E.; Howell, P.D. (2007). Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeology Journal, 15(7), 1397-1418. https://doi.org/10.1007/s10040-007-0208-7
  21. Mussa, K.R.; Mjemah, I.C.; Muzuka, A.N.N. (2020). A review on the state of knowledge, conceptual and theoretical contentions of major theories and principles governing groundwater flow modeling. Applied Water Science, 10(6), 149. https://doi.org/10.1007/s13201-020-01202-6
  22. Ossa-Valencia, J.; Betancur-Vargas, T. (2018). Hydrogeochemical characterization and identification of a system of regional flow. Case study: The aquifer on the Gulf of Urabá, Colombia. Revista Facultad de Ingeniería, 86, 9-18. https://doi.org/10.17533/udea.redin.n86a02
  23. Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795-4812. https://doi.org/10.1029/JZ068i016p04795
  24. Universidad de Antioquia and CORPOURABA. (2014). Actualización del Modelo Hidrogeológico Conceptual del Sistema Acuífero del Urabá Antioqueño.
  25. Villegas, P.; Paredes, V.; Betancur, T.; Taupin, J.D.; Toro, L.E. (2018). Groundwater evolution and mean water age inferred from hydrochemical and isotopic tracers in a tropical confined aquifer. Hydrological Processes, 32(14), 2158-2175. https://doi.org/10.1002/hyp.13160
  26. Wang, X.S.; Wan, L.; Jiang, X.W.; Li, H.; Zhou, Y.; Wang, J.; Ji, X. (2017). Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108, 139-156. https://doi.org/10.1016/j.advwatres.2017.07.016
  27. Wang, C.; Gomez-Velez, J.D.; Wilson, J.L. (2018). The importance of capturing topographic features for modeling groundwater flow and transport in mountainous watersheds. Water Resources Research, 54(12), 10313-10338. https://doi.org/10.1029/2018WR023863
  28. Yang, Q.; Lu, W.; Fang, Y. (2011). Numerical modeling of three dimension groundwater flow in Tongliao (China). Procedia Engineering, 24, 638-642. https://doi.org/10.1016/j.proeng.2011.11.2709
  29. Zhang, Y.; Benson, D.A. (2008). Lagrangian simulation of multidimensional anomalous transport at the MADE site. Geophysical Research Letters, 35(7). https://doi.org/10.1029/2008GL033222
  30. Zhou, Y.; Li, W. (2011). A review of regional groundwater flow modeling, Geoscience Frontiers, 2(2), 205-214. https://doi.org/10.1016/j.gsf.2011.03.003