Factor analysis and multifractal concentration-area modeling for the delimitation of complex pedogeochemical anomalies in the Loma Roja-Loma Hierro sector, Western Cuba
Published 2022-07-07
Keywords
- Sedex deposits,
- Pedogeochemical anomalies,
- Compositional data analysis,
- Log-ratio transformation,
- Factor analysis
- Multifractal modelling ...More
How to Cite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
The Loma Roja-Loma Hierro sector is located in the northern part of the Dora-Francisco metallogenic district, Northwestern Cuba. This study was aimed at delimiting the complex pedogeochemical anomalies related to Sedex-type mineral deposits through the combined application of factor analysis and multifractal modeling. The analytical results of 1801 soil samples were used, those selected correspond to different indicator and pathfinder elements (Ag, As, Ba, Bi, Cu, Pb, Sb and Zn). Prior to the application of statistical methods, the conversion of closed to open data was required by means of an additive log-ratio transformation (alr), to avoid the correlations between the elements that were spurious. The application of correlation analysis and factor analysis to these transformed geochemical variables allowed us to define the links between indicator and pathfinder elements, as well as to obtain two complex geochemical variables, each one of them representative of a certain style of mineralization. The scores assigned to these complex geochemical variables were converted to values in ranges [0-1] using a fuzzy logistic function. The estimation of the anomalous thresholds was derived from the concentration-area diagrams generated from the application of fractal analysis to the transformed complex geochemical variables, previously interpolated with ordinary kriging. The multi-elemental geochemical maps show two mineralized zones with distinctive characteristics: one located to the north represented by pedogeochemical anomalies of Bi-Cu-As, associated with the roots of quartz-cupriferous stockwork, and another located in the southern half with pedogeochemical anomalies of Ba-Ag-Zn-Sb-Pb, related to pyrite-polymetallic stratiform mineralization.
Downloads
References
- Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall.
- Ali, K.; Cheng, Q.; Li, W.; Chen, Y. (2006). Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China. Geochemistry: Exploration, Environment, Analysis, 6(4), 341-348. https://doi.org/10.1144/1467-7873/06-109
- Baldé, A.; Lastra-Rivero, J.F. (2018). Aplicación integrada de la estadística multivariada y análisis fractal a datos litogeoquímicos en el distrito metalogénico Dora-Francisco, Pinar del Río. Minería y Geología, 34(2), 140-154.
- Batista, A.C.; Ferreira da Silva, E.A.; Azevedo, M.C.C.; Sousa, A.J.; Cardoso-Fonseca, E. (2002). Soil data analysis from central Portugal by Principal Component Analysis and geostatistical techniques. Geochemistry: Exploration, Environment, Analysis, 2(1), 15-25. https://doi.org/10.1144/1467-787302-002
- Burov, V.; Martínez, D.; Jusainov, Y.; Fernández, R.; Derbenev, V.; Uspensky, A. (1986). Informe sobre los trabajos de levantamiento geológico a escala 1:50 000 realizados en la parte occidental de la provincia Pinar del Río (hojas 3382-I, IV; 3383-I, II, II; 3482-IV-a, c; 3483-III-c). Oficina Nacional de Recursos Minerales. La Habana.
- Carranza, E.J.M. (2009). Fractal analysis of geochemical anomalies. In: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS (pp. 85-114). Chapter 4. Elsevier. https://doi.org/10.1016/S1874-2734(09)70008-7
- Carranza, E.J.M. (2010a). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10(2), 171-187. https://doi.org/10.1144/1467-7873/09-223
- Carranza, E.J.M. (2010b). Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10(4), 365-381. https://doi.org/10.1144/1467-7873/09-224
- Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratiotransformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185. https://doi.org/10.1016/j.gexplo.2011.05.007
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279-300. https://doi.org/10.1023/A:1023818214614
- Galletti, A.; Maratea, A. (2017). Mapping the reliability of the additive log-ratio transformation. International Journal of Internet Technology and Secured Transactions, 7(1), 71-87. https://doi.org/10.1504/IJITST.2017.085736
- Ghasemzadeh, S.; Maghsoudia, A.; Yousefi, M.; Mihalaskyc, M.J. (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geology Reviews, 113, 103115. https://doi.org/10.1016/j.oregeorev.2019.103115
- Good, I.J. (1983). The philosophy of exploratory data analysis. Philosophy of Science, 50(2), 283-295. https://doi.org/10.1086/289110
- Huang, J.; Zhao, P. (2015). Application of a multifractal model for identification of Cu, Au and Zn anomalies in Western Yunnan, Southwestern China. Geochemistry: Exploration, Environment, Analysis, 15(1), 54-61. https://doi.org/10.1144/geochem2014-286
- Khammar, F.; Yousefi, S.; Joonaghani, S.A. (2021). Analysis of lithogeochemical data using log-ratio transformations and C-A fractal to separate geochemical anomalies in Tak-Talar, Iran. Arabian Journal of Geosciences, 14(8), 686. https://doi.org/10.1007/s12517-021-06920-y
- Lima, A.; Plant, J.A.; De Vivo, B.; Tarvainen, T.; Albanese, S.; Cicchella, D. (2008). Interpolation methods for geochemical maps: a comparative study using arsenic data from European stream waters. Geochemistry: Exploration, Environment, Analysis, 8(1), 41-48. https://doi.org/10.1144/1467-7873/07-146
- Miesch, A.T. (1981). Estimation of the geochemical threshold and its statistical significance. Journal of Geochemical Exploration, 16(1), 49-76. https://doi.org/10.1016/0375-6742(81)90125-4
- Nazarpour, A.; Omran, N.R.; Paydar, G.R.; Sadeghi, B.; Matroud, F.; Nejad, A.M. (2015). Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry, 75(1), 117-132. https://doi.org/10.1016/j.chemer.2014.11.002
- Panahi, A.; Cheng, Q.; Bonham-Carter, G.F. (2004). Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1), 59-70. https://doi.org/10.1144/1467-7873/03-023
- Reimann, C.; Filzmoser, P.; Garrett, R.G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), 185-206. https://doi.org/10.1016/S0883-2927(01)00066-X
- Sinclair, A.J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3(2), 129-149. https://doi.org/10.1016/0375-6742(74)90030-2
- Sinclair, A.J. (1991). A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. Journal of Geochemical Exploration, 41(1-2), 1-22. https://doi.org/10.1016/0375-6742(91)90071-2
- Stanley, C.R.; Sinclair, A.J. (1987). Anomaly recognition for multi-element geochemical data: A background characterization approach. Journal of Geochemical Exploration, 29(1-3), 333-353. https://doi.org/10.1016/0375-6742(87)90085-9
- Stanley, C.R.; Sinclair, A.J. (1989). Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. Journal of Geochemical Exploration, 32(1-3), 355-357. https://doi.org/10.1016/0375-6742(89)90076-9
- Tripathi, V.S. (1979). Factor analysis in geochemical exploration. Journal of Geochemical Exploration, 11(3), 263-275. https://doi.org/10.1016/0375-6742(79)90004-9
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35. https://doi.org/10.1016/j.gexplo.2012.02.002
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45-58. https://doi.org/10.1144/geochem2012-144
- Yuan, F.; Li, X.; Zhou, T.; Deng, Y.; Zhang, D.; Xu, C.; Zhang, R.; Jia, C.; Jowitt, S.M. (2015). Multifractal modelling-based mapping and identification of geochemical anomalies associated with Cu and Au mineralisation in the NW Junggar area of northern Xinjiang Province, China. Journal of Geochemical Exploration, 154, 252-264. https://doi.org/10.1016/j.gexplo.2014.11.015
- Zhao, J.; Chen, S.; Zuo, R. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis, 17(3), 239-251. https://doi.org/10.1144/geochem2016-013
- Zhao, J.; Wang, W.; Cheng, Q.; Agterberg, F. (2016). Mapping of Fe mineral potential by spatially weighted principal component analysis in the eastern Tianshan mineral district, China. Journal of Geochemical Exploration, 164, 107-121. https://doi.org/10.1016/j.gexplo.2015.11.004
- Zheng, C.; Liu, P.; Luo, X.; Wen, M.; Huang, W.; Liu, G.; Wu, X.; Chen, Z.; Albanese, S. (2021). Application of compositional data analysis in geochemical exploration for concealed deposits: A case study of Ashele copper-zinc deposit, Xinjiang, China. Applied Geochemistry, 130, 104997. https://doi.org/10.1016/j.apgeochem.2021.104997
- Ziaii, M.; Carranza, E.J.M.; Ziaei, M. (2011). Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers & Geosciences, 37(12), 1935-1945. https://doi.org/10.1016/j.cageo.2011.05.009
- Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170-176. https://doi.org/10.1016/j.gexplo.2013.08.013
- Zuo, R.; Xia, Q.; Wang, H. (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202-211. https://doi.org/10.1016/j.apgeochem.2012.10.031
- Zuo, R.; Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33-41. https://doi.org/10.1016/j.gexplo.2015.04.010