Vol. 44 Núm. 3 (2022): Boletín de Geología
Artículos científicos

Cambios recientes de la línea de costa entre Bocas de Ceniza y Puerto Velero (Atlántico, Colombia)

Isaac Eli Ferrucho-Maloof
Universidad del Norte
Luis Jesús Otero-Díaz
Universidad del Norte
Jairo Eduardo Cueto-Fonseca
Universidad de la Costa
Biografía

Publicado 2022-10-26

Palabras clave

  • Erosión,
  • Características hidrodinámicas,
  • Transporte potencial longitudinal de sedimentos,
  • DSAS

Cómo citar

Ferrucho-Maloof, I. E., Otero-Díaz, L. J., & Cueto-Fonseca, J. E. (2022). Cambios recientes de la línea de costa entre Bocas de Ceniza y Puerto Velero (Atlántico, Colombia). Boletín De Geología, 44(3), 159–178. https://doi.org/10.18273/revbol.v44n3-2022007

Altmetrics

Resumen

En las últimas décadas se ha observado un incremento en los efectos erosivos en las costas, que pone en riesgo las infraestructuras y el paisaje del entorno. El departamento del Atlántico (Colombia) no es ajeno a esta repercusión. Se llevó a cabo un estudio de los distintos factores que influyen en las tasas de erosión y de acreción en la zona costera con base en las características hidrodinámicas y de transporte potencial longitudinal de sedimentos (TPLS). Los datos del TPLS se consiguieron mediante dos ecuaciones propuestas por CERC y Kamphuis, cuyos parámetros a escala interanual, intraestacional y anual, están influenciados por el oleaje. Los cambios multitemporales de las líneas de costa del departamento del Atlántico se evaluaron con la herramienta del DSAS (Digital Shoreline Analysis System). Los resultados del linear regression rate (LRR) y end point rate (EPR), suministrados por el DSAS, evidencian que los municipios de Barranquilla, Puerto Colombia y Tubará tienen porcentajes de erosión del 40% al 50%, por lo que se concluye que gran parte de la costa del Atlántico se encuentra en procesos erosivos. Finalmente, la ecuación de Kamphuis identifica una similitud con los resultados de la erosión y de acreción en las 8 playas del área de estudio, por lo cual las variables más significativas son la pendiente, la granulometría y la altura de ola.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Anfuso, G.; Martínez del Pozo, J.A. (2005). Towards management of coastal erosion problems and human structure impacts using GIS tools: case study in Ragusa Province, Southern Sicily, Italy. Environmental Geology, 48(4-5), 646-659. https://doi.org/10.1007/s00254-005-1322-2
  2. Baig, M.R.I.; Ahmad, I.A.; Shahfahad, M.T.; Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361-376. https://doi.org/10.1080/19475683.2020.1815839
  3. Benavente, J.; Gracia, F.J.; López-Aguayo, F. (2000). Empirical model of morphodynamic beachface behaviour for low-energy mesotidal environments. Marine Geology, 167(3-4), 375-390. https://doi.org/10.1016/S0025-3227(00)00036-0
  4. Booij, N.; Ris, R.C.; Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622
  5. CERC. (1984). Shore protection manual. US Army Corps of Engineers. Coastal Engineering Research Center.
  6. Cueto, J.; Otero, L. (2020). Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches. Applied Ocean Research, 101, 102283. https://doi.org/10.1016/j.apor.2020.102283
  7. Etter, P.C.; Lamb, P.J.; Portis, D.H. (1987). Heat and freshwater budgets of the Caribbean Sea with revised estimates for the Central American Seas. Journal of Physical Oceanography, 17(8), 1232-1248. https://doi.org/10.1175/1520-0485(1987)017<1232:HAFBOT>2.0.CO;2
  8. Kamphuis, J.W.; Davies, M.H.; Nairn, R.B.; Sayao, O.J. (1986). Calculation of littoral sand transport rate. Coastal Engineering, 10(1), 1-21. https://doi.org/10.1016/0378-3839(86)90036-0
  9. Kamphuis, J.W. (1991). Along shore sediment transport rate. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(6), 624-640. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:6(624)
  10. Komar, P.D.; Inman, D.L. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914-5927. https://doi.org/10.1029/JC075i030p05914
  11. Magaña, V.; Amador, J.A.; Medina, S. (1999). The midsummer drought over Mexico and Central America. Journal of Climate, 12(6), 1577-1588. https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
  12. Martínez, J.O. (1993). Geomorfología y amenazas geológicas de la línea de costa del Caribe central colombiano (Sector Cartagena, Bocas de Ceniza). No. 19. República de Colombia, Ministerio de Minas y Energía, Instituto de Investigaciones en Geosciencias, Minería y Química.
  13. Mendivelso, D.; Carvajal, J.; Pinzón, L. (2010). Estudios geomorfológicos del sector comprendido entre Bocatocino, Atlántico y Ciénaga, Magdalena. Informe final del proyecto Anden Caribe Fase-2. Servicio Geológico Colombiano.
  14. Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific Reports, 8, 12876. https://doi.org/10.1038/s41598-018-30904-w
  15. Molina-Flórez, L.G. (2014). Caracterización hidrodinámica del oleaje en el Golfo de Urabá para la estimación del transporte potencial longitudinal de sedimentos a partir de la simulación de un clima marítimo con información escasa. Caso de aplicación: Punta Yarumal. Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia.
  16. Moore, L.J. (2000). Shoreline Mapping Techniques. Journal of Coastal Research, 16(1), 111-124.
  17. Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81-95. https://doi.org/10.1080/1064119X.2018.1448912
  18. Núñez-Ravelo, F.A. (2017). Geomorfología y sedimentología del sistema de cárcavas en el borde costero al suroeste del Castillo de Araya, Estado Sucre, Venezuela. Investigaciones Geográficas, 92. https://doi.org/10.14350/rig.53428
  19. Orejarena-Rondón, A.F.; Afanador-Franco, F.; Ramos de la Hoz, I.; Conde-Frías, M.; Restrepo-López, J.C. (2015). Evolución morfológica de la espiga de Galerazamba, Caribe colombiano. Boletín Científico CIOH, 33, 123-144. https://doi.org/10.26640/22159045.282
  20. Ortiz-Royero, J.C. (2012). Exposure of the Colombian Caribbean coast, including San Andrés Island, to tropical storms and hurricanes, 1900-2010. Natural Hazards, 61(2), 815-827. https://doi.org/10.1007/s11069-011-0069-1
  21. Ortiz, J.C.; Salcedo, B.; Otero, L.J. (2014). Investigating the collapse of the Puerto Colombia pier (Colombian Caribbean coast) in March 2009: methodology for the reconstruction of extreme events and the evaluation of their impact on the coastal infrastructure. Journal of Coastal Research, 30(2), 291-300. https://doi.org/10.2112/JCOASTRES-D-12-00062.1
  22. Osorio, A.F.; Mesa, J.C.; Bernal, G.R.; Montoya, R.D. (2009). Reconstrucción de cuarenta años de datos de oleaje en el mar Caribe colombiano empleando el modelo WWIII™ y diferentes fuentes de datos. Boletín Científico CIOH, 27, 37-56. https://doi.org/10.26640/22159045.200
  23. Oyedotun, T.D. (2014). Shoreline geometry: DSAS as a tool for historical trend analysis. Geomorphological Techniques, 3(2.2), 1-12.
  24. Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201-222.
  25. Pujos, M.; Pagliardini, J.L.; Steer, R.; Vernette, G.; Weber, O. (1986). Influencia de la contra-corriente norte colombiana para la circulación de las aguas en la plataforma continental: su acción sobre la dispersión de los efluentes en suspensión del rio Magdalena. Boletín Científico CIOH, 6, 3-15. https://doi.org/10.26640/22159045.18
  26. Rangel-Buitrago, N.; Anfuso, G. (2011). An application of Dolan and Davis (1992) classification to coastal storms in SW Spanish littoral. Journal of Coastal Research, 64, 1891-1895.
  27. Rangel‐Buitrago, N.; Anfuso, G. (2013). Winter wave climate, storms and regional cycles: the SW Spanish Atlantic coast. International Journal of Climatology, 33(9), 2142-2156. https://doi.org/10.1002/joc.3579
  28. Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.T. (2015). Coastal erosion along the Caribbean coast of Colombia: magnitudes, causes and management. Ocean & Coastal Management, 114, 129-144. https://doi.org/10.1016/j.ocecoaman.2015.06.024
  29. Rangel-Buitrago, N.; Anfuso, G. (2015). Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain). Springer.
  30. Rangel-Buitrago, N.; Williams, A.T.; Anfuso, G. (2018). Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean & Coastal Management, 156, 58-75. https://doi.org/10.1016/j.ocecoaman.2017.04.006
  31. Vega-Fuentes, M.J. (2017). Comparación de metodologías de refinamiento de escala de reanálisis de oleaje. Tesis de Maestría, Universidad del Norte, Barranquilla, Colombia.
  32. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213