Vol. 46 No. 3 (2024): Boletín de Geología
Artículos científicos

Geometric and kinematic analysis of the Puquín anticline, Cusco – Perú

Yessenia Puma-Enriquez
Universidad Nacional de San Antonio Abad del Cusco
Wilson López-Abanto
Consultor independiente
José Cárdenas-Roque
Universidad Nacional de San Antonio Abad del Cusco

Published 2024-11-28

Keywords

  • Fault propagation fold,
  • Trishear,
  • Kink,
  • Structural analysis

How to Cite

Puma-Enriquez, Y., López-Abanto, W., & Cárdenas-Roque, J. (2024). Geometric and kinematic analysis of the Puquín anticline, Cusco – Perú. Boletín De Geología, 46(3), 147–168. https://doi.org/10.18273/revbol.v46n3-2024006

Altmetrics

Abstract

The Puquín anticline is a geological structure located in the Cusco region that extends ~9.8 km. In the core of the anticline, sedimentary rocks of the Puquín Formation are exposed. Likewise, sedimentary rocks of the Quilque, Chilca, Kayra and Soncco formations outcrop on the flanks of the anticline. It is an asymmetric fold with a N-S fold axis strike, closed in the northern and central portion and open in the southern portion, and has a double dip axis of approximately 21°S and 34°N. The front flank shows greater thickening than the rear flank and is traversed by a backthrust. Based on these features, the Puquín anticline is interpreted as a fault-propagation fold. The shortening calculated from three structural sections, carried out by the trishear method, is 8.32 km (15.1%), 8.61 km (12.1%) and 8.62 km (12.0%) for the northern, central and south cross-sections, respectively. The analysis of the pattern of fractures, faults and veinlets carried out in 23 structural stations in different sectors of the anticline made it possible to distinguish 5 sets of orientations: WNW-ESE, NNE-SSW, W-E, NE-SW and WSW-ENE. These structures are compatible with the structural arrangement that originates in the folds and in this case with the Puquín fold.

Downloads

Download data is not yet available.

References

  1. Allmendinger, R.W. (1998). Inverse and fordward modeling of trishear fault-propagation folds. Tectonics, 17(4), 640-656. https://doi.org/10.1029/98TC01907
  2. Allmendinger, R.W. (2012). FaultFoldForward.v.6. http://www.geo.cornell.edu/geology/faculty/RWA/programs/faultfoldforward-v-6.html
  3. Allmendinger, R.; Cardozo, N.; Fisher, D. (2012). Structural geology algorithms: Vectors. Cambridge University Press. https://doi.org/10.1017/CBO9780511920202
  4. Buxtorf, A. (1916). Prognosen und Befunde beim Hauensteinbasis-und Grenchenburg-tunnel und die Bedeutung der letzteren für die Geologie des Juragebirges. Naturforschung Gesellschaft Basel Verhandlungen, 27, 184-254.
  5. Cabrera, J. (1988). Néotectonique et sismotectonique dans la Cordillère Andine au niveau du changement de géometrie de la subduction: la région de Cusco, Pérou. Thése Docteur, Université Paris-Sud, Francia.
  6. Cadell, H.M. (1889). Experimental researches in mountain building. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 35(1), 337-357. https://doi.org/10.1017/S0080456800017658
  7. Callot, P. (2008). La Formation Ayabacas (limite TuronienConiacien, Sud-Pérou): collapse sous-marin en réponse à l’amorce de l’orogenèse andine. Thèse Docteur, Université Paul Sabatier, Toulouse, Francia.
  8. Carlotto, V.; Gil, W.; Cárdenas, J.; Chávez, R. (1996). Geología de los cuadrángulos de Urubamba y Calca. INGEMMET, Boletín, Serie A: Carta Geológica Nacional, 65.
  9. Carlotto, V. (1998). Évolution andine et raccourcissement au niveau de Cusco (13-16°S), Pérou: enregistrement sédimentaire, chronologie, contrôles paléogéographiques, évolution cinématique. Thèse Docteur, Université de Grenoble I, Francia.
  10. Carlotto, V.; Jaillard, E.; Carlier, G.; Cárdenas, J.; Cerpa, L.; Flores, T.; Latorre, O.; Ibarra, I. (2005). Las cuencas terciarias sinorogénicas en el Altiplano y en la Cordillera Occidental del sur del Perú. En: J. Arce (ed.). Alberto Giesecke Matto (pp. 103-126). Sociedad Geológica del Perú.
  11. Carlotto, V. (2006). La deformación y el acortamiento andino en el sur del Perú: Cusco-Abancay-Sicuani. Boletín Sociedad Geológica del Perú, 101, 91-119.
  12. Carlotto, V.; Cardénas, J.; Carlier, G. (2011). Geología del cuadrángulo de Cusco, hoja 28-s, escala 1:50,000. INGEMMET. Boletín, Serie A:138 Carta Geológica Nacional.
  13. Carlotto, V. (2013). Paleogeographic and tectonic controls on the evolution of Cenozoic basins in the Altiplano and Western Cordillera of southern Peru. Tectonophysics, 589, 195-219. https://doi.org/10.1016/j.tecto.2013.01.002
  14. Dahlstrom, C.D.A. (1970). Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18(3), 332-406. https://doi.org/10.35767/gscpgbull.18.3.332
  15. Fleuty, M.J. (1964). The description of folds. Proceedings of the Geologists’ Association, 75(4), 461-492. https://doi.org/10.1016/S0016-7878(64)80023-7
  16. Hardy, S.; Ford, M. (1997). Numerical modeling of trishear fault propagation folding. Tectonics, 16(5), 841-854. https://doi.org/10.1029/97TC01171
  17. Heim, A. (1878). Untersuchungen über den Mechanismus der Gebirgsbildung im Anschluss an die geologische Monographie der Tödi-Windgällen-Gruppe: Atlas, Volumen 3. Benno Schwabe.
  18. Jaillard, E.; Sempere, T. (1989). Cretaceous sequence stratigraphy of Peru and Bolivia. In: Contribuciones de los simposios sobre el Cretácico de América Latina, Parte A: Eventos y registro sedimentario. Buenos Aires, 1-27.
  19. Jaillard, E. (1993). L’évolution tectheionique de la marge péruvienne au Sénonien et Paléocène et ses relations avec la géodynamique. Bulletin Socété Géologique de France, 164(6), 819-830.
  20. Jaillard, E. (1994). Kimmeridgian to Paleocene tectonic and geodynamic evolution of the Peruvian (and Ecuadorian) margin. En: J.A. Salfity (ed.). Cretaceous tectonics of the Andes (pp. 101-166). Vieweg Publishing. https://doi.org/10.1007/978-3-322-85472-8_3
  21. Jamison, W.R. (1987). Geometric analysis of fold development in overthrust terranes. Journal Structural Geolology, 9(2), 207-219. https://doi.org/10.1016/0191-8141(87)90026-5
  22. Mitra, S. (1990). Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, 74(6), 921-945. https://doi.org/10.1306/0C9B23CB-1710-11D7-8645000102C1865D
  23. Mitra, S. (2002). Fold-accommodation faults. AAPG Bulletin, 86(4), 671-693. https://doi.org/10.1306/61EEDB7A-173E-11D7-8645000102C1865D
  24. Newell, N.D. (1949). Geology of the Lake Titicaca region, Perú and Bolivia. Geological Society of America.
  25. Peach, B.N.; Horne, J.; Gunn, W.; Clough, C.T.; Hinxman, L.W.; Cadell, H.M. (1888). Report on the recent work of the Geological Survey in the north-west Highlands of Scotland, based on the field notes and maps. Quarterly Journal of the Geological Society, 44, 378-441. https://doi.org/10.1144/GSL.JGS.1888.044.01-04.34
  26. Poblet, J. (2004). Geometría y cinemática de pliegues relacionados con cabalgamientos. Trabajos de Geología, 24, 127-146. https://doi.org/10.17811/tdg.24.2004.127-147
  27. Rich, J.L. (1934). Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky and Tennessee. AAPG Bulletin, 18(12), 1584-1596. https://doi.org/10.1306/3D932C94-16B1-11D7-8645000102C1865D
  28. Sibson, R.H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8), 1031-1042. https://doi.org/10.1016/0191-8141(96)00032-6
  29. Sitter, L. (1976). Geología Estructural. Editorial Omega S.A., 4ta edición.
  30. Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7), 684-721. https://doi.org/10.2475/ajs.283.7.684
  31. Suppe, J. (1985). Principles of structural geology. Prentice Hall.
  32. Suppe, J.; Medwedeff, D. (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83(3), 409-454.
  33. Twiss, R.; Moores, E. (2007). Structural Geology. 2nd edition. W.H. Freedman and Company.