Vol. 45 No. 3 (2023): Boletín de Geología
Artículos científicos

Evaluation of nearshore geological features: Baseline for mitigation and protection with ecosystem-based alternatives for the coastal zone of the Cordoba department, Colombia

David Fernando Morales-Giraldo
Instituto de Investigaciones Marinas y Costeras
Oswaldo Coca
Instituto de Investigaciones Marinas y Costeras
Constanza Ricaurte-Villota
Instituto de Investigaciones Marinas y Costeras

Published 2023-10-26

Keywords

  • Coastal erosion,
  • Artificial reef,
  • Nearshore,
  • Coastal protection,
  • Ecosystem-based Alternatives

How to Cite

Morales-Giraldo, D. F. ., Coca, O., & Ricaurte-Villota, C. (2023). Evaluation of nearshore geological features: Baseline for mitigation and protection with ecosystem-based alternatives for the coastal zone of the Cordoba department, Colombia. Boletín De Geología, 45(3), 51–62. https://doi.org/10.18273/revbol.v45n3-2023003

Altmetrics

Abstract

The implementation of ecosystem-based measures as adaptation alternatives to Climate Change has become increasingly important in the face of natural threats in coastal areas. In terms of coastal erosion, reefs are considered a marine morphology that reduces wave energy by forming a rough surface at the bottom. To evaluate the viability of this alternative, a geological, oceanographic, and climatological context is required, subjects that encompass the processes that condition the presence of such ecosystems. The monitoring of coastal erosion in the department of Córdoba made it possible to identify the village of Santander de la Cruz as a priority site to assess an ecosystem-based mitigation alternative. A detailed bathymetric model was generated as a basis for the identification of morphological features of the seabed; additionally, sediment samples and a rock sample were collected to establish the main sedimentological characteristics of the area. In the marine area to the west of the Santander de la Cruz district, an outstanding rough morphology was identified from the sedimentary plane, whose characteristics indicate the presence of hard bottoms. The bottom was characterized by presenting sandy sediments of very fine to fine size that make up the submerged beach deposit with a very low slope, while towards the zone of marine influence the sediments were characterized by being silt to clay type. These deposits were interrupted by the natural rocky structure that forms a concave axis of northeast-southwest trend, almost parallel to the coastline. The geological characteristics of the bottom, represented in the natural relief, constitute a baseline for the implantation of an artificial reef, being a reference to the presence of hard bottom ecosystems. To define its viability, a detailed analysis of the rock material and the oceanographic and biotic characteristics that can favor the growth of the ecosystem is required.

Downloads

Download data is not yet available.

References

  1. Bardají, T.; Zazo, C.; Cabero, A.; Dabrio, C.J.; Goy, J.L.; Lario, J.; Silva, P.G. (2009). Impacto del Cambio Climático en el litoral. Enseñanza de las Ciencias de la Tierra, 17(2), 141-154.
  2. Bird, C.O.; Sinclair, A.J.; Bell, P.S.; Phillips, M.; Green, C.; Hardiman, N. (2019). Autonomous monitoring of nearshore geomorphology and hydrodynamics to assist decision making in coastal management, using shore-based radar systems: A case study on the Fylde peninsula, UK. ICE Coastal Management 2019. La Rochelle, France.
  3. Blott, S.J.; Pye, K. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237-1248. https://doi.org/10.1002/esp.261
  4. Chen, J.L.; Chuang, C.T.; Jan, R.Q.; Liu, L.C.; Jan, M.S. (2013). Recreational Benefits of Ecosystem Services on and around Artificial Reefs: A Case Study in Penghu, Taiwan. Ocean & Coastal Management, 85(Part A), 58-64. https://doi.org/10.1016/j.ocecoaman.2013.09.005
  5. Correa, I.D.; Acosta, S.; Bedoya, G. (2007a). Análisis de las causas y monitoreo de la erosión litoral en el departamento de Córdoba. Convenio de transferencia horizontal de Ciencia y Tecnología No. 30. Corporación Autónoma de los Valles del Sinú y del San Jorge-CVS; Universidad EAFIT, Departamento de Geología (Área de Ciencias del Mar). Fondo Editorial Universidad EAFIT, Medellín, 128 pp.
  6. Correa, I.; Ríos, A.; González, D.; Toro, M; Ojeda, G.; Restrepo, L. (2007b). Erosión litoral entre Arboletes y Punta San Bernardo, costa Caribe colombiana. Boletín de Geología, 29(2), 115-129.
  7. De Oliveira, J.F.; Barboza, E.G.; Martins, E.M.; Scarelli, F.M. (2019). Geomorphological and stratigraphic analysis applied to coastal management. Journal of South American Earth Sciences, 96. https://doi.org/10.1016/j.jsames.2019.102358
  8. Folk, R.L. (1974). Petrology of sedimentary rocks. Hemphill Publishing Company.
  9. Folk, R.L.; Ward, W.C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3-26). https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d
  10. Hernández-Castellanos, I.C. (2017). Diversidad de hidroides (hydroidolina), corales (hexacorallia), octocorales (octocorallia), y ascidias (ascidiacea) en arrecifes artificiales de la bahía de Pozos Colorados, Santa Marta, Colombia. Trabajo de Grado, Universidad Jorge Tadeo Lozano. Bogotá, Colombia.
  11. Innomar. (2009). SES-2000, Narrow-Beam Parametric SubBottom Profilers Users Guide. Innomar Technologie GmbH, 8.
  12. INVEMAR-CVS. (2013). Monitoreo de la erosión de los entes territoriales de la UAC costera del departamento de Córdoba (p. 68). Convenio No. 025 de 2012.
  13. INVEMAR-CVS. (2016). Avances en el conocimiento y lineamientos para el control de la erosión en la zona costera del departamento de Córdoba (p. 65). Convenio No. 027 de 2016.
  14. INVEMAR-CVS. (2017). Avances en el conocimiento y lineamientos para el control de la erosión en la zona costera del departamento de Córdoba (p. 51). Convenio No. 022 de 2017.
  15. INVEMAR-CVS. (2018). Avances en el conocimiento y lineamientos para el control de la erosión en la zona costera del departamento de Córdoba (p. 99). Convenio No. 022 de 2018.
  16. Miselis, J.L. (2008). Nearshore morphology and lithology: Links to framework geology and shoreline change. PhD Dissertation, College of William and Mary ScholarWorks. https://doi.org/10.25773/v5-8m7b-2t52
  17. Moberg, F.; Rönnbäck, P. (2003). Ecosystem services of the tropical seascape: Interactions, substitutions and restoration. Ocean and Coastal Management, 46(1-2), 27-46. https://doi.org/10.1016/S0964-5691(02)00119-9
  18. Ordóñez-Zúñiga, A.; Peña-Mejía, C.; Bastidas-Salamanca, M.; Ricaurte-Villota, C. (2017). Región 8: Sinú-Urabá. En: C. Ricaurte-Villota, M.L. Bastidas Salamanca (eds.). Regionalización oceanográfica: una visión dinámica del Caribe (pp. 138-155). INVEMAR.
  19. Osorio-Cano, J.D.; Alcérreca-Huerta, J.C.; Osorio, A.F.; Oumeraci, H. (2018). CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs, 37(4), 1093-1108. https://doi.org/10.1007/s00338-018-1736-4
  20. Osorio-Cano, J.D.; Osorio, A.F.; Peláez-Zapata, D.S. (2019). Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering, 130, 282-295. https://doi.org/10.1016/j.ecoleng.2017.07.015
  21. Porro, R.; Kim, K.; Spirandelli, D.; Lowry, K. (2020). Evaluating erosion management strategies in Waikiki, Hawaii. Ocean and Coastal Management, 188. https://doi.org/10.1016/j.ocecoaman.2020.105113
  22. Ramos, J; Lino, P.G.; Himes-Cornell, A.; Santos, M.N. (2019). Local fishermen’s perceptions of the usefulness of artificial reef ecosystem services in Portugal. PeerJ, 6:e6206. https://doi.org/10.7717/peerj.6206
  23. Rangel-Buitrago, N.G.; Posada-Posada, B.O. (2005). Geomorfología y procesos erosivos en la costa norte del departamento de Córdoba, Caribe colombiano (sector Paso Nuevo- Cristo Rey). Boletín de Investigaciones Marinas y Costeras, 34, 101-119. https://doi.org/10.25268/bimc.invemar.2005.34.0.236
  24. Rangel-Buitrago, N.G.; Anfuso, G.; Williams, A.T. (2015). Coastal erosion along the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean and Coastal Management, 114, 129-144. https://doi.org/10.1016/j.ocecoaman.2015.06.024
  25. Serrano-Suárez, B.E. (2004). The Sinú river delta on the northwestern Caribbean coast of Colombia: Bay infilling associated with delta development. Journal of South American Earth Sciences, 16(7), 623-631. https://doi.org/10.1016/j.jsames.2003.10.005
  26. Stronkhorst, J.; Van der Spek, A.; Van Maren, B. (2013). A Quickscan of Building-with-Nature Solutions to Mitigate Coastal Erosion in Colombia. Interim report.
  27. Van Rijn, L.C. (2011). Coastal erosion and control. Ocean and Coastal Management, 54(12), 867-887. https://doi.org/10.1016/j.ocecoaman.2011.05.004
  28. Wetzel, M.A.; Scholle, J.; Teschke, K. (2014). Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem. Marine Environmental Research, 99, 125-135. https://doi.org/10.1016/j.marenvres.2014.04.008