Comparative results obtained for coal bed methane from different types of sampling in the Sinifaná basin (Antioquia, Colombia)
Published 2025-05-06
Keywords
- Coal bed methane,
- Coal zone,
- Underground mines
How to Cite
Copyright (c) 2025 Boletín de Geología

This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
The objective of this work was to compare the coal bed methane obtained from different types of sampling: channel by ply, lateral, and vertical drilling cores at the San Fernando Mine in the Municipality of Amagá – Antioquia, Colombia. These samples were subjected to gas desorption, gas chromatography, porosity, permeability and high-pressure adsorption analyses. The studied coals are classified as subbituminous A coal and high-volatile C bituminous coal, according to the ASTM D388-19a standard classification of coal by rank. The average of total gas desorbed in the samples varied between 0.2 and 33.7 ft3/ton, which are low values compared to the other coal mining areas of Colombia and the world. Gas composition was primarily methane (C1) ranging from 92.2% to 98.98%, carbon dioxide (CO2) ranging from 0.30% and 4.27%, and amounts typically less than 1.0% other hydrocarbons. At a pressure of 1500 psi, the CH4 adsorption isotherms for the different types of samples varied between 45 and 340 ft3/ton. According to the results, it can be established that there is a lateral variability in depth of the methane gas contents and with a tendency to decrease in coal seam 2 and 3. Vertical variability was also found in the vertical drilling and in the samples taken from the channel per ply of the exploitation front faces. When comparing the results with those of previous studies, the gas contents were generally low (less than 60 ft3/ton). On the other hand, it can be determined in a simple way and at a low-cost manner in samples taken from the exploitation fronts faces.
Downloads
References
- ANH (2011). Valoración del potencial exploratorio para CBM en las áreas carboníferas de Amagá y Boyacá - Cundinamarca, UPTC – EAFIT y la ANH (UPTC et al. 2011).
- ASTM D388-19a. Standard classification of coals by rank. ASTM International, West Conshohocken, PA, 2019. https://doi.org/10.1520/D0388-19a
- ASTM D7569-10. Standard practice for determination of gas content of coal direct desorption method. ASTM International, West Conshohocken, PA, 2010. https://doi.org/10.1520/D7569-10
- Blandón, A.; Caro, L.D. (2013). Informe final proyecto “Evaluación de las asociaciones de litotipos en la generación y almacenamiento de Gas Asociado al Carbón (GAC) en los carbones de la Formación Amagá entre los municipios de Amagá y Angelópolis”. Colciencias y La Universidad Nacional de Colombia, Sede Medellín. 143p.
- Blandón, A.; Molina, J.; Caro, L. (2015). Informe final proyecto “Determinación del grado de explosividad del polvo de carbón y cuantificación del contenido de gas metano en los mantos de carbón de la cuenca del Sinifaná” mediante convenio 2013-AS-17-0002 entre la Gobernación de Antioquia y la Universidad Nacional de Colombia Sede Medellín. 642 p.
- Beamish, B.B.; Crosdale, P.J. (1998). Instantaneous outbursts in underground coal mines: an overview and association with coal type. International Journal of Coal Geology, 35(1-4), 27-55. https://doi.org/10.1016/S0166-5162(97)00036-0
- Bernard, B.B.; Brooks, J.M.; Sackett W.M. (1978). Light hydrocarbons in recent Texas continental shelf and slope sediments. Journal of Geophysical Research: Oceans, 83(C8), 4053-4061. https://doi.org/10.1029/JC083iC08p04053
- Cao, Y.; He, D.; Glick, D.C. (2001). Coal and gas outbursts in footwalls of reverse faults. International Journal of Coal Geology, 48(1-2), 47-63. https://doi.org/10.1016/S0166-5162(01)00037-4
- Caro-González, L.D. (2013). Evaluación de las asociaciones de litotipos en la generación y almacenamiento de gas asociado al carbón (GAC) en los carbones de la Formación Amagá entre los municipios de Amagá y Angelópolis. Tesis de maestría. Universidad Nacional de Colombia, Medellín, Colombia.
- Caro, L.D.; Blandón, A.; Molina, J.M. (2015). Variación vertical y lateral del contenido de gas metano asociado a los mantos de carbón. Revista Ciencias de la Tierra, 38, 49-59. https://doi.org/10.15446/rbct.n38.47142
- Cooper, J.R. (2006). Igneous intrusion and thermal evolution in the Raton Basin, CO-NM: Contact metamorphism and coal-bed methane generation. M.S. thesis, University of Missouri, Columbia.
- Fisne, A.; Esen, O. (2014). Coal and gas outburst hazard in Zonguldak Coal Basin of Turkey, and association with geological parameters. Natural Hazards, 74, 1363-1390. https://doi.org/10.1007/s11069-014-1246-9
- Fu, G.; Hu, M.; Han, Y. (2012). Controlling of faults to gas accumulation of volcanic rock in depression basin: an example from Xujiaweizi Depression of Songliao Basin. Jilin University Earth Science, 42(1), 1-8.
- Graciano, J.C.; Arango, J.C. (1996). Determinación del contenido de Grisú IN-SITU para la cuenca carbonífera Amagá-Angelópolis (Suroeste Antioqueño). Tesis, Universidad Nacional de Colombia. Medellín.
- Guo, Y.S.; Lin, B.Q.; Wu, C.S. (2007). Main causes and preventing strategies to gas explosion accidents in low gas mines. China Safety Science Journal, 17(5), 53-57.
- Gurba, L.W.; Weber, C.R. (2001). Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Australia. International Journal of Coal Geology, 46(2-4), 113-131. https://doi.org/10.1016/S0166-5162(01)00020-9
- Ilg, B.R.; Hemmings-Sykes, S.; Nicol, A.; Baur, J.; Fohrmann, M.; Funnell, R.; Milner, M. (2012). Normal faults and gas migration in an active plate boundary, southern Taranaki Basin, offshore New Zealand. AAPG Bulletin, 96(9), 1733-1756. https://doi.org/10.1306/02011211088
- Jaramillo-Zapata, J.E. (2017). Evaluación petrográfica y geoquímica de muestras de núcleo en una perforación horizontal en carbones de la Formación Amagá para identificar la variación lateral de la materia orgánica, contenido y calidad de los hidrocarburos presentes. Tesis, Universidad Nacional de Colombia, Medellín, Colombia.
- Karacan, Ö.; Goodman, G. (2012). Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine. International Journal of Coal Geology, 98, 110-127. https://doi.org/10.1016/j.coal.2012.04.002
- Lopera, S.; Blandón, A.; Mesa, S.; Mejía, V. (2013). Una metodología experimental para evaluar la adsorción de gas metano en mantos de carbón. ACIPET, 4-5.
- McCulloch, C.M.; Diamond, W.P.; Bench, B.M.; Deul, M. (1975). Selected geologic factors affecting mining of the Pittsburgh Coalbed. Report of Investigations No. 8093. US Dept. of Interior, US Bureau of Mines, Pittsburgh, PA.
- Nagelhout, C.C.; Roest, J.P.A. (1997). Investigating fault slip in a model of an underground gas storage facility. International Journal of Rock Mechanic Mining Sciences, 34(3-4). https://doi.org/10.1016/S1365-1609(97)00051-8
- Ramírez, P. (1991). Introducción a la caracterización de carbones. Universidad Nacional de Colombia.
- Sam, H.S. (2012). The influence of faulting on hydrocarbon migration in the kupe area, south Taranaki basin, New Zealand. MSc. Thesis, Victoria University of Wellington, Wellington.
- Sarana, S.; Kar, R. (2011). Effect of igneous intrusive on coal microconstituents: study from an Indian Gondwana coalfield. International Journal of Coal Geology, 85(1), 161-167. https://doi.org/10.1016/j.coal.2010.11.006
- SGC. (2017). Actividades de exploración en la investigación de gas metano asociado al carbón en Colombia. Departamento de Boyacá y Santander. Grupo GMAC Recursos Energéticos. Servicio Geológico Colombiano.
- Strąpoć, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hedges, S. (2008). Variability of geochemical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin. International Journal of Coal Geology, 76(1-2), 98-110. https://doi.org/10.1016/j.coal.2008.02.002
- Thielemann, T.; Krooss, B.M.; Littke, R.; Welte, D.H. (2001). Does coal mining induce methane emissions through the lithosphere/atmosphere boundary in the Ruhr Basin, Germany? Journal of Geochemical Exploration, 74(1-3), 219-231. https://doi.org/10.1016/S0375-6742(01)00186-8
- Thomas, L. (2002). Coal Geology. John Wiley & Sons Ltd.
- Ulery, J.P. (2008). Explosion hazards from methane emissions related to geologic features in coal mines. Information Circular No. 9503, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburg, PA.
- Wang, X. (2007). Analysis of main controlling geologic factors on coalbed methane in Liujia coal mining area. China Coalbed Methane, 4, 26-30.
- Wang, Z.C.; Zhao, W.Z.; Li, Z.Y.; Jiang, X.F.; Li, J. (2008). Role of basement faults in gas accumulation of Xujiahe Formation Sichuan Basin. Petroleum Exploration and Development, 35(5), 541-547. https://doi.org/10.1016/S1876-3804(09)60087-2
- Yao, Y.B.; Liu, D.M. (2012). Effects of igneous intrusions on coal petrology, pore-fracture and coalbed methane characteristics in Hongyang, Handan and Huaibei coalfields, North China. International Journal of Coal Geology, 96-97, 72-81. https://doi.org/10.1016/j.coal.2012.03.007