Uplift and denudation of the Antioquia Eastern Massif (Colombia) from fission-tracks thermochronology
Published 2024-11-28
Keywords
- Morphogenesis,
- Andean orogeny,
- Antioqueño Plateau
How to Cite
Copyright (c) 2024 Boletín de Geología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
Fission-track dating and thermochronology have been used to assess the low-thermal history of some plutonic rocks intruded into the Antioquia Eastern Massif as defined by Gerardo Botero. These techniques enable us to gain a better understanding of the orogenic process that shaped the northern Colombian Central Cordillera. Samples were collected from the Antioqueño Batholith, Sonsón Batholith, and the smaller igneous bodies: La Unión, San Diego, Altavista and Ovejas, all intruded during the Late Cretaceous. Zircon fission track ages vary from 46.4±1.1 Ma to 64.0±1.3 Ma. Mean track lengths are very homogeneous, with variations from 13.9±1.6 μm to 14.6±1.3 μm. The results of thermal annealing modeling carried out with the AFTSolve program show three main segments: 1) Significant decrease in temperature from 240°C to ~50°C in the middle to late Eocene at maximum cooling rates of 50°C/Ma; 2) A period of thermal stability extending into the Middle Miocene; and 3) a final cooling segment through to surface temperature (20°C) at cooling rates of about 4°C/Ma. Results were interpreted as coincident with the Pre-Andean (middle Eocene) and the Eu-Andean (late Miocene-Pliocene) orogenies. This last pulse is related to the recent orogeny that exhumed the analyzed samples, occurring between 3 and 5 Ma ago, interpreted as the maximum time for the formation of the “Central Cordillera” erosion surface and its subsequent superimposed relief. The intermediate quiescent period did not record the Oligocene Proto-Andean orogeny. The tectonic phases produced episodes of uplift and denudational response at maximum rates of 2000 and 160 m/ Ma, respectively, using an assumed geothermal gradient of 25ºC/km.
Downloads
References
- Anderson, T.A. (1972). Paleogene nonmarine Gualanday Group, Neiva Basin, Colombia, and regional development of the Colombian Andes. GSA Bulletin, 83(8), 2423-2438. https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2
- Arias-López, L.A. (1995). El relieve de la zona central de Antioquia: Un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería, Universidad de Antioquia, 10, 9-24. https://doi.org/10.17533/udea.redin.325539
- Aspden, J.A.; McCourt, W.J. (1986). Mesozoic oceanic terrane in the central Andes of Colombia. Geology, 14(5), 415-418. https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2
- Aspden, J.A.; McCourt, W.J.; Brook, M. (1987). Geometrical control of subduction–related magmatism: The Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893-905. https://doi.org/10.1144/gsjgs.144.6.0893
- Botero-Arango, G. (1963). Contribución al conocimiento de la geología de la Zona Central de Antioquia. Anales de la Facultad de Minas, 57.
- Bourgois, J.; Toussaint, J.F.; González, H.; Azema, J.; Calle, B.; Desmet, A.; Murcia, L.A.; Acevedo, A.P.; Parra, E.; Tournon, J. (1987). Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes). Tectonophysics, 143(4), 307-327. https://doi.org/10.1016/0040-1951(87)90215-0
- Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. (1999). Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84(9), 1213-1223. https://doi.org/10.2138/am-1999-0901
- Correa, A.M.; Pimentel, M.; Restrepo, J.J.; Nilson, A.; Ordóñez, O.; Martens, U.; Laux, J.E.; Junges, S. (2006). U-Pb zircon ages and Nd-Sr isotopes of the Altavista Stock and the San Diego Gabbro: New insights on Cretaceous arc magmatism in the Colombian Andes. V South American Symposium on Isotope Geology, Punta del Este, Uruguay.
- Donelick, R.A.; Ketcham, R.A.; Carlson, W.D. (1999). Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84(9), 1224-1234. https://doi.org/10.2138/am-1999-0902
- Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3-12. https://doi.org/10.1016/S0098-3004(01)00024-3
- Duque-Caro, H. (1980). Geotectónica y evolución de la región noroccidental colombiana. Boletín Geológico, 33(3), 1-37. https://doi.org/10.32685/0120-1425/bolgeol23.3.1980.257
- Duque-Caro, H. (1990). Neogene stratigraphy, paleoceceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4), 203-234. https://doi.org/10.1016/0031-0182(90)90178-A
- Feininger, T.; Botero, G. (1982). The Antioqueño Batholith, Colombia. Publicaciones Geológicas Especiales del Ingeominas, 12, 1-50.
- Galbraith, R.F. (1981). On statistical models of fission track counts. Journal of the International Association for Mathematical Geology, 13(6), 471-478. https://doi.org/10.1007/BF01034498
- Galbraith, R.F.; Laslett, G.M. (1993). Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21(4), 459-470. https://doi.org/10.1016/1359-0189(93)90185-C
- García-Casco, A.; Restrepo, J.J.; Correa-Martínez, A.M.; Blanco-Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. (2020). The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 45-75). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.02
- Gleadow, A.J.W.; Brown, R.W. (1999). Fission track thermochronology and the long-term denudational response to tectonics. In: M.A. Summerfield (eds.). Geomorphology and Global Tectonics (pp. 57-75). John Wiley and Sons Ltd.
- Hermelin, M. (1982). El origen del Valle de Aburrá, evolución de las ideas. Boletín de Ciencias de la Tierra, 7-8, 47-65.
- Hoorn, C.; Guerrero, J.; Sarmiento, G.A.; Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23(3), 237-240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2
- Hurford, A.J.; Green, P.F. (1983). The zeta age calibration of fission-track dating. Chemical Geology, 41, 285-317. https://doi.org/10.1016/S0009-2541(83)80026-6
- Hurford, A.J. (1986). Cooling and uplift patterns in the Lepontine Alps south-central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92(4), 413-427. https://doi.org/10.1007/BF00374424
- Ibáñez-Mejía, M.; Restrepo, J.J.; García-Casco, A. (2020). Tectonic juxtaposition of Triassic and Cretaceous meta-(ultra)mafic complexes in the Central Cordillera of Colombia (Medellin area) revealed by zircon U-Pb geochronology and Lu-Hf isotopes. In: A. Bartorelli, W. Teixeira, B. Neves (eds.). Geocronologia e Evolução Tectônica do Continente Sul-Americano: a contribuição de Umberto Giuseppe Cordani (pp. 418-443). Solaris Edições Culturais.
- Irving, E.M. (1975). Structural evolution of the northernmost Andes, Colombia. U.S. Geological Survey Professional Paper, 846, 1-47. https://doi.org/10.3133/pp846
- Keller, G.; Barron, J.A. (1987). Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography and Paleoclimatology, 2(6), 697-713. https://doi.org/10.1029/PA002i006p00697
- Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84(9), 1235-1255. https://doi.org/10.2138/am-1999-0903
- Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctorade thesis, Universitat de Barcelona, España.
- Migon, P. (2006). Classic in Physical Geography Revisited. Büdel, J. (1982): Climatic geomorphology. Princeton: Princeton University Press. (Translation of Klima-geomorphologie, Berlin-Stuttgart: Gebrüder Borntraeger, 1977). Progress in Physical Geography: Earth and Environment, 30(1), 99-103. https://doi.org/10.1191/0309133306pp473xx
- Montes-Correa L.F. (2007). Exhumación de las rocas metamórficas de alto grado que afloran al Oriente del Valle de Aburrá, Antioquia. Tesis de Maestría, Universidad EAFIT, Medellín, Colombia.
- Noriega-Londoño, S. (2016). Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte-Colombia. Tesis de maestría, Universidad Nacional de Colombia, Medellin, Colombia.
- Noriega-Londoño, S.; Restrepo-Moreno, S.A.; Vinasco, C.; Bermúdez, M.A.; Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351, 106890. https://doi.org/10.1016/j.geomorph.2019.106890
- Oppenheim, V. (1941). Geología de la Cordillera Oriental entre los Llanos y el Magdalena. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 4(14), 175-181.
- Ordóñez-Carmona, O.; Pimentel, M. (2001). Consideraciones geocronológicas e isotópicas del Batolito Antioqueño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(94), 27-35. https://doi.org/10.18257/raccefyn.25(94).2001.2710
- Ordóñez-Carmona, O.; Pimentel, M.M.; Ángel-Cárdenas, P. (2001). Consideraciones geocronológicas e isotópicas preliminares del magmatismo Cretaceo-Paleoceno en el Norte de la Cordillera Central. VIII Congreso Colombiano de Geología, Manizales, Colombia.
- Ordóñez, O.; Pimentel, M.M.; Laux, J.H. (2008). Edades U–Pb del Batolito Antioqueño. Boletín de Ciencias de la Tierra, 22, 129-130.
- Page, W.D.; James, M.E. (1981). The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín, Colombia: Implications to tectonics and erosion rates. Revista CIAF, 6(1-3), 421-454.
- Paucar, C.; Saenz, E. (1995). Estudio de la evolución térmica del Batolito Antioqueño por huellas de fisión. Tesis de grado, Universidad Nacional de Colombia, Medellín, Colombia.
- Pérez-Ángel, G. (1967). Determinación de edad absoluta de algunas rocas de Antioquia por métodos radioactivos. Dyna, 84, 27-31.
- Rendón, D. (2003). Tectonic and sedimentary evolution of the Aburra Valley, northern Colombian Andes. Master Thesis, Shimane University, Matsue, Japan.
- Restrepo, J.J.; Toussaint, J.F. (1982). Metamorfismos superpuestos de la Cordillera Central de Colombia. V Congreso Latinoamericano de Geología, Buenos Aires, Argentina.
- Restrepo, J.J.; Toussaint, J.F. (1990). Cenozoic arc magmatism of northwestern Colombia. In: S.M. Kay, C.W. Rapela (eds.). Plutonism from Antarctica to Alaska (pp. 205-212). Geological Society of America. https://doi.org/10.1130/SPE241-p205
- Restrepo, J.J.; Toussaint, J.F. (2020). Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 37-63). Volume 1. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.03
- Restrepo, J.J.; Frantz, J.C.; Ordóñez-Carmona, O.; Correa, A.M.; Martens, U.; Chemale, F. (2007). Edad triásica de formación de la Ofiolita de Aburrá, flanco occidental de la Cordillera Central. XI Congreso Colombiano de Geología, Bucaramanga, Colombia.
- Restrepo, J.J.; Ordóñez-Carmona, O.; Armstrong, R.; Pimentel, M.M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
- Restrepo-Moreno S.A. (2009). Long-term morphotectonic evolution and denudation chronology of the Antioqueño Plateau, Cordillera Central, Colombia. PhD Thesis, University of Florida, USA.
- Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
- Saenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis. Shimane University, Matsue, Japan.
- SIGAC (2017). Mapa digital, Departamento de Antioquia a escala 1:500.000. Instituto Geográfico Agustín Codazzi.
- Steiger, R.H.; Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
- Suwa, K.; Enami, M.; Horiuchi, T. (1987). Chlorine-rich potassium hastingsite from West Ongul Island, Lützow–Holm Bay, East Antarctica. Mineralogical Magazine, 51(363), 709-714. https://doi.org/10.1180/minmag.1987.051.363.11
- Toro, G.; Hermelin, M.; Schwave, E.; Posada, B.; Silva, D.; Poupeau, G. (2006). Fission-track datings and long-term stability in the Central Cordillera highlands, Colombia. In: E. Latrubesse (ed.). Tropical Geomorphology with Special Reference to South America (pp. 1-16).
- Toro, G.E; Rendón. D.A.; Montes, L. (2007). Levantamiento de los Andes en el norte de la Cordillera Central de Colombia: una aproximación geomorfológica, estructural y cronológica (trazas de fisión). Boletín de Ciencias de la Tierra, 22, 125-126.
- Toussaint, J.F.; Restrepo, J.J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: Oceanic terranes. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 237-260). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.07
- Villagómez-Díaz, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America. PhD Thesis, Université de Genève, Switzerland.
- Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
- Villamil, T. (1999). Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1-4), 239-275. https://doi.org/10.1016/S0031-0182(99)00075-9
- Van der Hammen, T. (1958). Estratigrafía del Terciario y Maestrichtiano continentales y tectogénesis de los Andes colombianos. Boletín Geológico, 6(1-3), 67-128. https://doi.org/10.32685/0120-1425/bolgeol6.1-3.1958.309
- Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Pelaez, C. (2006). Geochronological, isotopic and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007