Vol. 46 No. 3 (2024): Boletín de Geología
Tribute to the work of Dr. Gerardo Botero-Arango

Uplift and denudation of the Antioquia Eastern Massif (Colombia) from fission-tracks thermochronology

Edgar Alland Saenz-Mateus
Ingeniería de Rocas y Suelos S.A.S.
Bio
Carlos Guillermo Paucar-Álvarez
Universidad Nacional de Colombia
Jorge Julián Restrepo-Álvarez
Universidad Nacional de Colombia

Published 2024-11-28

Keywords

  • Morphogenesis,
  • Andean orogeny,
  • Antioqueño Plateau

How to Cite

Saenz-Mateus, E. A., Paucar-Álvarez, C. G., & Restrepo-Álvarez, J. J. (2024). Uplift and denudation of the Antioquia Eastern Massif (Colombia) from fission-tracks thermochronology. Boletín De Geología, 46(3), 205–227. https://doi.org/10.18273/revbol.v46n3-2024009

Altmetrics

Abstract

Fission-track dating and thermochronology have been used to assess the low-thermal history of some plutonic rocks intruded into the Antioquia Eastern Massif as defined by Gerardo Botero. These techniques enable us to gain a better understanding of the orogenic process that shaped the northern Colombian Central Cordillera. Samples were collected from the Antioqueño Batholith, Sonsón Batholith, and the smaller igneous bodies: La Unión, San Diego, Altavista and Ovejas, all intruded during the Late Cretaceous. Zircon fission track ages vary from 46.4±1.1 Ma to 64.0±1.3 Ma. Mean track lengths are very homogeneous, with variations from 13.9±1.6 μm to 14.6±1.3 μm. The results of thermal annealing modeling carried out with the AFTSolve program show three main segments: 1) Significant decrease in temperature from 240°C to ~50°C in the middle to late Eocene at maximum cooling rates of 50°C/Ma; 2) A period of thermal stability extending into the Middle Miocene; and 3) a final cooling segment through to surface temperature (20°C) at cooling rates of about 4°C/Ma. Results were interpreted as coincident with the Pre-Andean (middle Eocene) and the Eu-Andean (late Miocene-Pliocene) orogenies. This last pulse is related to the recent orogeny that exhumed the analyzed samples, occurring between 3 and 5 Ma ago, interpreted as the maximum time for the formation of the “Central Cordillera” erosion surface and its subsequent superimposed relief. The intermediate quiescent period did not record the Oligocene Proto-Andean orogeny. The tectonic phases produced episodes of uplift and denudational response at maximum rates of 2000 and 160 m/ Ma, respectively, using an assumed geothermal gradient of 25ºC/km.

Downloads

Download data is not yet available.

References

  1. Anderson, T.A. (1972). Paleogene nonmarine Gualanday Group, Neiva Basin, Colombia, and regional development of the Colombian Andes. GSA Bulletin, 83(8), 2423-2438. https://doi.org/10.1130/0016-7606(1972)83[2423:PNGGNB]2.0.CO;2
  2. Arias-López, L.A. (1995). El relieve de la zona central de Antioquia: Un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería, Universidad de Antioquia, 10, 9-24. https://doi.org/10.17533/udea.redin.325539
  3. Aspden, J.A.; McCourt, W.J. (1986). Mesozoic oceanic terrane in the central Andes of Colombia. Geology, 14(5), 415-418. https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2
  4. Aspden, J.A.; McCourt, W.J.; Brook, M. (1987). Geometrical control of subduction–related magmatism: The Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893-905. https://doi.org/10.1144/gsjgs.144.6.0893
  5. Botero-Arango, G. (1963). Contribución al conocimiento de la geología de la Zona Central de Antioquia. Anales de la Facultad de Minas, 57.
  6. Bourgois, J.; Toussaint, J.F.; González, H.; Azema, J.; Calle, B.; Desmet, A.; Murcia, L.A.; Acevedo, A.P.; Parra, E.; Tournon, J. (1987). Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes). Tectonophysics, 143(4), 307-327. https://doi.org/10.1016/0040-1951(87)90215-0
  7. Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. (1999). Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84(9), 1213-1223. https://doi.org/10.2138/am-1999-0901
  8. Correa, A.M.; Pimentel, M.; Restrepo, J.J.; Nilson, A.; Ordóñez, O.; Martens, U.; Laux, J.E.; Junges, S. (2006). U-Pb zircon ages and Nd-Sr isotopes of the Altavista Stock and the San Diego Gabbro: New insights on Cretaceous arc magmatism in the Colombian Andes. V South American Symposium on Isotope Geology, Punta del Este, Uruguay.
  9. Donelick, R.A.; Ketcham, R.A.; Carlson, W.D. (1999). Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84(9), 1224-1234. https://doi.org/10.2138/am-1999-0902
  10. Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3-12. https://doi.org/10.1016/S0098-3004(01)00024-3
  11. Duque-Caro, H. (1980). Geotectónica y evolución de la región noroccidental colombiana. Boletín Geológico, 33(3), 1-37. https://doi.org/10.32685/0120-1425/bolgeol23.3.1980.257
  12. Duque-Caro, H. (1990). Neogene stratigraphy, paleoceceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4), 203-234. https://doi.org/10.1016/0031-0182(90)90178-A
  13. Feininger, T.; Botero, G. (1982). The Antioqueño Batholith, Colombia. Publicaciones Geológicas Especiales del Ingeominas, 12, 1-50.
  14. Galbraith, R.F. (1981). On statistical models of fission track counts. Journal of the International Association for Mathematical Geology, 13(6), 471-478. https://doi.org/10.1007/BF01034498
  15. Galbraith, R.F.; Laslett, G.M. (1993). Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21(4), 459-470. https://doi.org/10.1016/1359-0189(93)90185-C
  16. García-Casco, A.; Restrepo, J.J.; Correa-Martínez, A.M.; Blanco-Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. (2020). The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 45-75). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.02
  17. Gleadow, A.J.W.; Brown, R.W. (1999). Fission track thermochronology and the long-term denudational response to tectonics. In: M.A. Summerfield (eds.). Geomorphology and Global Tectonics (pp. 57-75). John Wiley and Sons Ltd.
  18. Hermelin, M. (1982). El origen del Valle de Aburrá, evolución de las ideas. Boletín de Ciencias de la Tierra, 7-8, 47-65.
  19. Hoorn, C.; Guerrero, J.; Sarmiento, G.A.; Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23(3), 237-240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2
  20. Hurford, A.J.; Green, P.F. (1983). The zeta age calibration of fission-track dating. Chemical Geology, 41, 285-317. https://doi.org/10.1016/S0009-2541(83)80026-6
  21. Hurford, A.J. (1986). Cooling and uplift patterns in the Lepontine Alps south-central Switzerland and an age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology, 92(4), 413-427. https://doi.org/10.1007/BF00374424
  22. Ibáñez-Mejía, M.; Restrepo, J.J.; García-Casco, A. (2020). Tectonic juxtaposition of Triassic and Cretaceous meta-(ultra)mafic complexes in the Central Cordillera of Colombia (Medellin area) revealed by zircon U-Pb geochronology and Lu-Hf isotopes. In: A. Bartorelli, W. Teixeira, B. Neves (eds.). Geocronologia e Evolução Tectônica do Continente Sul-Americano: a contribuição de Umberto Giuseppe Cordani (pp. 418-443). Solaris Edições Culturais.
  23. Irving, E.M. (1975). Structural evolution of the northernmost Andes, Colombia. U.S. Geological Survey Professional Paper, 846, 1-47. https://doi.org/10.3133/pp846
  24. Keller, G.; Barron, J.A. (1987). Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography and Paleoclimatology, 2(6), 697-713. https://doi.org/10.1029/PA002i006p00697
  25. Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84(9), 1235-1255. https://doi.org/10.2138/am-1999-0903
  26. Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono–magmatic approach. Doctorade thesis, Universitat de Barcelona, España.
  27. Migon, P. (2006). Classic in Physical Geography Revisited. Büdel, J. (1982): Climatic geomorphology. Princeton: Princeton University Press. (Translation of Klima-geomorphologie, Berlin-Stuttgart: Gebrüder Borntraeger, 1977). Progress in Physical Geography: Earth and Environment, 30(1), 99-103. https://doi.org/10.1191/0309133306pp473xx
  28. Montes-Correa L.F. (2007). Exhumación de las rocas metamórficas de alto grado que afloran al Oriente del Valle de Aburrá, Antioquia. Tesis de Maestría, Universidad EAFIT, Medellín, Colombia.
  29. Noriega-Londoño, S. (2016). Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte-Colombia. Tesis de maestría, Universidad Nacional de Colombia, Medellin, Colombia.
  30. Noriega-Londoño, S.; Restrepo-Moreno, S.A.; Vinasco, C.; Bermúdez, M.A.; Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351, 106890. https://doi.org/10.1016/j.geomorph.2019.106890
  31. Oppenheim, V. (1941). Geología de la Cordillera Oriental entre los Llanos y el Magdalena. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 4(14), 175-181.
  32. Ordóñez-Carmona, O.; Pimentel, M. (2001). Consideraciones geocronológicas e isotópicas del Batolito Antioqueño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(94), 27-35. https://doi.org/10.18257/raccefyn.25(94).2001.2710
  33. Ordóñez-Carmona, O.; Pimentel, M.M.; Ángel-Cárdenas, P. (2001). Consideraciones geocronológicas e isotópicas preliminares del magmatismo Cretaceo-Paleoceno en el Norte de la Cordillera Central. VIII Congreso Colombiano de Geología, Manizales, Colombia.
  34. Ordóñez, O.; Pimentel, M.M.; Laux, J.H. (2008). Edades U–Pb del Batolito Antioqueño. Boletín de Ciencias de la Tierra, 22, 129-130.
  35. Page, W.D.; James, M.E. (1981). The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín, Colombia: Implications to tectonics and erosion rates. Revista CIAF, 6(1-3), 421-454.
  36. Paucar, C.; Saenz, E. (1995). Estudio de la evolución térmica del Batolito Antioqueño por huellas de fisión. Tesis de grado, Universidad Nacional de Colombia, Medellín, Colombia.
  37. Pérez-Ángel, G. (1967). Determinación de edad absoluta de algunas rocas de Antioquia por métodos radioactivos. Dyna, 84, 27-31.
  38. Rendón, D. (2003). Tectonic and sedimentary evolution of the Aburra Valley, northern Colombian Andes. Master Thesis, Shimane University, Matsue, Japan.
  39. Restrepo, J.J.; Toussaint, J.F. (1982). Metamorfismos superpuestos de la Cordillera Central de Colombia. V Congreso Latinoamericano de Geología, Buenos Aires, Argentina.
  40. Restrepo, J.J.; Toussaint, J.F. (1990). Cenozoic arc magmatism of northwestern Colombia. In: S.M. Kay, C.W. Rapela (eds.). Plutonism from Antarctica to Alaska (pp. 205-212). Geological Society of America. https://doi.org/10.1130/SPE241-p205
  41. Restrepo, J.J.; Toussaint, J.F. (2020). Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 37-63). Volume 1. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.03
  42. Restrepo, J.J.; Frantz, J.C.; Ordóñez-Carmona, O.; Correa, A.M.; Martens, U.; Chemale, F. (2007). Edad triásica de formación de la Ofiolita de Aburrá, flanco occidental de la Cordillera Central. XI Congreso Colombiano de Geología, Bucaramanga, Colombia.
  43. Restrepo, J.J.; Ordóñez-Carmona, O.; Armstrong, R.; Pimentel, M.M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
  44. Restrepo-Moreno S.A. (2009). Long-term morphotectonic evolution and denudation chronology of the Antioqueño Plateau, Cordillera Central, Colombia. PhD Thesis, University of Florida, USA.
  45. Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
  46. Saenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis. Shimane University, Matsue, Japan.
  47. SIGAC (2017). Mapa digital, Departamento de Antioquia a escala 1:500.000. Instituto Geográfico Agustín Codazzi.
  48. Steiger, R.H.; Jager, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
  49. Suwa, K.; Enami, M.; Horiuchi, T. (1987). Chlorine-rich potassium hastingsite from West Ongul Island, Lützow–Holm Bay, East Antarctica. Mineralogical Magazine, 51(363), 709-714. https://doi.org/10.1180/minmag.1987.051.363.11
  50. Toro, G.; Hermelin, M.; Schwave, E.; Posada, B.; Silva, D.; Poupeau, G. (2006). Fission-track datings and long-term stability in the Central Cordillera highlands, Colombia. In: E. Latrubesse (ed.). Tropical Geomorphology with Special Reference to South America (pp. 1-16).
  51. Toro, G.E; Rendón. D.A.; Montes, L. (2007). Levantamiento de los Andes en el norte de la Cordillera Central de Colombia: una aproximación geomorfológica, estructural y cronológica (trazas de fisión). Boletín de Ciencias de la Tierra, 22, 125-126.
  52. Toussaint, J.F.; Restrepo, J.J. (2020). Tectonostratigraphic terranes in Colombia: An update. Second part: Oceanic terranes. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 237-260). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.07
  53. Villagómez-Díaz, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America. PhD Thesis, Université de Genève, Switzerland.
  54. Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
  55. Villamil, T. (1999). Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1-4), 239-275. https://doi.org/10.1016/S0031-0182(99)00075-9
  56. Van der Hammen, T. (1958). Estratigrafía del Terciario y Maestrichtiano continentales y tectogénesis de los Andes colombianos. Boletín Geológico, 6(1-3), 67-128. https://doi.org/10.32685/0120-1425/bolgeol6.1-3.1958.309
  57. Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Pelaez, C. (2006). Geochronological, isotopic and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007