A preliminary assessment of the topography of Botero’s Central Zone of Antioquia (Colombian Andes) via wavelet transforms
Published 2024-11-28
Keywords
- Antioqueño Plateau,
- Central Cordillera,
- DEM,
- Wavelets transform,
- GRASS-R
How to Cite
Copyright (c) 2024 Boletín de Geología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
The classic work “Contribución al conocimiento de la geología de la zona central de Antioquia” by Dr. G. Botero (1963) addressed for the first time important morpho-climatic aspects in the northern portion of the Central and Western mountain ranges, incorporating altimetry, geomorphology, tectonics and climate as geological elements that shape a key morpho-tectonic province in the Northern Andes: the Antioquia Altiplano (AA) in the Eastern Massif (OM) of Antioquia, sensu Botero, and the canyon of the Medellín-Porce river that dissect it, and the Cauca and Magdalena rivers that delimit it to the west and east respectively. Given the technological restrictions at the time, Dr. Botero was unable to address these topics based on digital analysis of the terrain. His work was mainly descriptive-qualitative and focused on establishing genetic elements in the evolution of the landscape. We present a preliminary proposal for using digital elevation models (DEM-SRTM) and GRASS tools and R extensions, to facilitate a quantitative-geomorphometric treatment of the terrain to address the topographic expression of AA-MO as a set of periodic-quasiperiodic signals, specifically through wavelet transforms. We preliminarily evaluate the role of the Haar wavelet transform both in a synthetic relief and a real case study on a portion of the MO, incorporating elements of the AA and the canyons/valleys of the Medellín and Cauca rivers. The dyadic DEM segment of the MO (~512×512 pixels of 90×90 m) enabled the preliminary dissection of the landscape, without loss of spatial information, into several levels, each containing landforms within a similar scale domain in space-frequency. Our approach holds promise for analyzing diverse landforms, including composites of hills, valleys and plateau systems. This pioneering application of wavelets to geomorphology problems in Colombia demonstrates the potential of these novel methods for decompositions and recompositions under GRASS-R is demonstrated.
Downloads
References
- Addison, P.S. (2016). The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC press.
- Adediran, A.O.; Parcharidis, I.; Poscolieri, M.; Pavlopoulos, K. (2004). Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology, 58(1-4), 357-370. https://doi.org/10.1016/j.geomorph.2003.07.024
- Agudelo-Duque, S. (2007). Herramientas para el análisis geomorfométrico del relieve, utilizando transformadas wavelet. MSc Tesis, Universidad Nacional de Colombia.
- Arias, L.A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Faculta de Ingeniería Universidad de Antioquia, 10, 9-24.
- Arias, L.A. (1996). Altiplanos y cañones en Antioquia: una mirada genética. Revista Facultad de Ingeniería Universidad de Antioquia, 8(2), 84-96.
- Arias, L.A.; González, L.H. (2003). La diversidad del relieve y los suelos en el altiplano de Santa Rosa de Osos (Antioquia): Sus significados ambientales. Boletín de Ciencias de la Tierra, 15, 51-72.
- Arias-López, L.A.; Gonzáles-Santamaría, L.H. (2007). Morfología del Altiplano de Santa Rosa de Osos (ASRO). Boletín de Geología, 29(1), 95-102.
- Bjørke, J.T.; Nilsen, S. (2003). Wavelets applied to simplification of digital terrain models. International Journal of Geographical Information Science, 17(7), 601-621. https://doi.org/10.1080/1365881031000135500
- Botero, G. (1940). Geología sobre el Ordoviciano de Antioquia. VIII Pan American Scientific Congress, Washington.
- Botero, G. (1941). Croquis Geológico de Antoquia. Minería, 19(111-112), 9080-9081.
- Botero, G. (1942). Contribución al conocimiento de la petrografía del Batolito Antioqueño. Minería, 20, 9318-9324.
- Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales Facultad de Minas, 57, 7-101.
- Botero, G.; Gutiérrez, J.; Álvarez, R. (1968). Fracturación en el Batolito Antioqueño y su influencia en el diseño de obras subterráneas. Simposio sobre Ingeniería Geológica, Bogotá.
- Botero, G.; González, H. (1983). Algunas localidades fosilíferas cretáceas de la Cordillera Central, Colombia. Geología Norandina, 7, 15-27.
- Bradshaw, G.; Spies, T. (1992). Characterizing canopy gap structure in forests using wavelet analysis. Journal of Ecology, 80(2), 205-215.
- Bruun, B.T.; Nilsen, S. (2003). Wavelet representation of large digital terrain models. Computers & Geosciences, 29(6), 695-703. https://doi.org/10.1016/S0098-3004(03)00015-3
- Burbank, D.W.; Anderson, R.S. (2013). Tectonic geomorphology. Wiley.
- Bustos, X.; Bermúdez, M.A. Toro, G.M.; Bernet, M.; Rojas, O.; Marín, M. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. Terra, 29(46), 43-67.
- Davis, J. D.; Chojnacki, J. D. (2017). Two‐dimensional discrete Fourier transform analysis of karst and coral reef morphologies. Transactions in GIS, 21(3), 521-545. https://doi.org/10.1111/tgis.12277
- de Micheaux, P.L.; Drouilhet, R.; Liquet, B. (2013). The R software, Fundamentals of Programming and Statistical Analysis. Springer. https://doi.org/10.1007/978-1-4614-9020-3
- Debret, M.; Sebag, D.; Crosta, X.; Massei, N.; Petit, J.R.; Chapron, E.; Bout-Roumazeilles, V. (2009). Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quaternary Science Reviews, 28(25-26), 2675-2688. https://doi.org/10.1016/j.quascirev.2009.06.005
- Doglioni, A.; Simeone, V. (2014). Geomorphometric analysis based on discrete wavelet transform. Environmental Earth Sciences. 71, 3095-3108. https://doi.org/10.1007/s12665-013-2686-3
- Dong, P.; Xia, J.; Zhong, R.; Zhao, Z.; Tan, S. (2021). A new method for automated measurement of sand dune migration based on multi-temporal LiDAR-Derived digital elevation models. Remote Sensing, 13(16), 3084. https://doi.org/10.3390/rs13163084
- Duque-Trujillo, J.; Bustamante, C.; Solari, L.; Gómez-Mafla, Á.; Toro-Villegas, G.; Hoyos, S. (2019). Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeov46n1-3120
- Falorni, G.; Teles, V.; Vivoni, E.R.; Bras, R.L.; Amaratunga, K.S. (2005). Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research: Earth Surface, 110(F2). https://doi.org/10.1029/2003JF000113
- Feininger, T.; Botero, G. (1982). The Antioquian Batholith, Colombia, Bogotá. Publicación Geológica Especial Ingeominas, 1-50.
- Finlayson, D.P.; Montgomery, D. (2003). Modeling large-scale fluvial erosion in geographic information systems. Geomorphology, 53(1-2), 147-164. https://doi.org/10.1016/S0169-555X(02)00351-3
- Florinsky, I. (2011). Digital Terrain Analysis in Soil Science and Geology. Academic Press.
- Foresman, T.W. (1998). The history of geographic information systems: perspectives from the pioneers. Prentice Hall.
- Gallant, J.C.; Hutchinson, M. F. (1997). Scale dependence in terrain analysis. Mathematics and Computers in Simulation, 43(3-6), 313-321. https://doi.org/10.1016/S0378-4754(97)00015-3
- Galli, A.; Heydt, G.; Ribeiro, P.F. (1996). Exploring the power of wavelet analysis. IEEE Computer Applications in Power, 9(4), 37-41. https://doi.org/10.1109/67.539845
- Gao, R.X.; Yan, R. (2011). From fourier transform to wavelet transform: A historical perspective. Wavelets: theory and applications for manufacturing (pp. 17-32). Springer.
- García, C.; Hermelin, M. (2004). Cálculo preliminar de la tasa de meteorización del Batolito Antioqueño, Cordillera Central, Colombia. Revista Brasileira de Geomorfología, 5(1), 43-53. https://doi.org/10.20502/rbg.v5i1.31
- Gerstner, T.; Helfrich, H.P.; Kunoth, A. (2003). Wavelet analysis of geoscientific data. En: H. Neugebauer, C. Simmer (eds.). Dynamics of Multiscale Earth Systems. (pp. 69-88). Springer. https://doi.org/10.1007/3-540-45256-7_4
- Gómez-Tapias, J.; Montes-Ramírez, N.E.; Nivia-Guevara, A.; Diederix, H. (2015). Mapa Geológico de Colombia, Escala 1: 1.000. 000. Servicio Geológico Colombiano.
- González, F. (2004). Caracterización textural de modelos de elevación digital del terreno con base en transformadas de paquetes wavelets de walsh y transformadas intermedias. MSc Tesis, Universidad Nacional, Medellín.
- Graps, A. (1995). An introduction to wavelets. IEEE Computational Science and Engineering, 2(2), 50-61. https://doi.org/10.1109/99.388960
- Guenther, E.J. (2017). Using spectral analysis techniques to identify characteristic scales in digital elevation models. PhD Thesis, Texas A&M University.
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. (2022). Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 3868-3876. https://doi.org/10.1109/JSTARS.2022.3173001
- Hani, A.F.M.; Sathyamoorthy, D.; Asirvadam, V.S. (2011). A method for computation of surface roughness of digital elevation model terrains via multiscale analysis. Computers & Geosciences, 37(2), 177-192. https://doi.org/10.1016/j.cageo.2010.05.021
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. (2003). A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing, 57(5-6), 327-345. https://doi.org/10.1016/S0924-2716(02)00162-4
- Heath, G.R.; Kots, E.; Robertson, J.L.; Lansky, S.; Khelashvili, G.; Weinstein, H.; Scheuring, S. (2021). Localization atomic force microscopy. Nature, 594(7863), 385-390. https://doi.org/10.1038/s41586-021-03551-x
- Hermelin, M. (1965). Estudio preliminar sobre la descomposición de algunas rocas del Batolito Antioqueño. Teiss de Pregrado, Universidad Nacional de Colombia.
- Hermelin, M. (1982). El origen del Valle de Aburrá: evolución de las ideas. Boletín de Ciencias de la Tierra, 7-8, 47-65.
- Hermelin, M. (1992). Los suelos del oriente antioqueño. Un recurso no renovable. Bulletin de l’Institut Français d’études andines, 21(1), 25-36.
- Hermelin, M. (2015). Landscapes and landforms of Colombia. Springer.
- Hess-Nielsen, N.; Wickerhauser, M.V. (1996). Wavelets and time-frequency analysis. Proceedings of the IEEE, 84(4), 523-540. https://doi.org/10.1109/5.488698
- Hutchinson, M.; Gallant, J. (2000). Digital elevation models and representation of terrain shape. En: J. Wilson, J. Gallant (eds). Terrain Analysis: Principles and Applications (pp. 29-50). John Wiley and Sons.
- IGAC (2017). Mapa Departamento de Antioquia, Escala 1:500.000. Instituto Geográfico Agustín Codazzi.
- Ihaka, R.; Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. https://doi.org/10.1080/10618600.1996.10474713
- Jasiewicz, J.; Stepinski, T.F. (2013). Geomorphons-a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147-156. https://doi.org/10.1016/j.geomorph.2012.11.005
- Jensen, J.R. (2009). Remote sensing of the environment: An earth resource perspective. Pearson Education India.
- Jordan, G.; Schott, B. (2005). Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sensing of Environment, 94(1), 31-38. https://doi.org/10.1016/j.rse.2004.08.013
- Kalbermatten, M.; van de Ville, D.; Turberg, P.; Tuia, D.; Joost, S. (2012). Multiscale analysis of geomorphological and geological features in high resolution digital elevation models using the wavelet transform. Geomorphology, 138(1), 352-363. https://doi.org/10.1016/j.geomorph.2011.09.023
- Kaplan, I. (2001). The Daubechies D4 wavelet Transform. http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/index.html
- Khatami, A.; Khosravi, A.; Nguyen, T.; Lim, C.P.; Nahavandi, S. (2017). Medical image analysis using wavelet transform and deep belief networks. Expert Systems with Applications, 86, 190-198. https://doi.org/10.1016/j.eswa.2017.05.073
- Klees, R.; Haagmans, R. (2000). Wavelets in the Geosciences. Springer.
- Kostek, B.; Zwan, P. (2001). Wavelet‐based automatic recognition of musical instruments. The Journal of the Acoustical Society of America, 110(5), 2754-2754. https://doi.org/10.1121/1.4777599
- Marsh, M.; Walsh, R.; Bromage, B. (2002). A wavelet analysis of quasi-periodic variability across a solar coronal hole region. Astronomy & Astrophysics, 393(2), 649-659. https://doi.org/10.1051/0004-6361:20021057
- Mojsilovic, A.; Popovic, M.V.; Rackov, D.M. (2000). On the selection of an optimal wavelet basis for texture characterization. IEEE Transactions on Image Processing, 9(12), 2043-2050. https://doi.org/10.1109/83.887972
- Montes, C.; Hatcher, R.D.; Restrepo-Pace, P.A. (2005). Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics, 399(1-4), 221-250. https://doi.org/10.1016/j.tecto.2004.12.024
- Montgomery, D.R.; Balco, G.; Willett, S.D. (2001). Climate, tectonics, and the morphology of the Andes. Geology, 29(7), 579-582. https://doi.org/10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2
- Muñoz, P.; Gorin, G.; Parra, N.; Velásquez, C.; Lemus, D.; Monsalve, C.; Jojoa, M. (2017). Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews, 155, 159-178. https://doi.org/10.1016/j.quascirev.2016.11.021
- Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. (2012). GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software, 31, 124-130. https://doi.org/10.1016/j.envsoft.2011.11.014
- Noriega-Londoño, S.; Restrepo-Moreno, S.A.; Vinasco, C.; Bermúdez, M.; Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351, 106890. https://doi.org/10.1016/j.geomorph.2019.106890
- Noriega-Londoño, S.; Arboleda-Giraldo, M.; Restrepo-Moreno, S.A.; Marín-Cerón, M.I. (2021). Cronoestratigrafía del Valle de Aburrá, Colombia: Una revisión. Ingeniería, Investigación y Desarrollo, 21(2), 1-12. https://doi.org/10.19053/1900771X.v21.n2.2021.14267
- Noriega-Londoño, S.; Restrepo-Moreno, S.A.; Marín-Cerón, M.I.; Carcaillet, J.; Bernet, M.; Angel, I. (2024). Erosion rates and morphogenesis of the El Peñol de Guatapé inselberg, northern Andes (Colombia), inferred from geomorphic analyses and cosmogenic 10Be measurements. Journal of South American Earth Sciences, 134, 104726. https://doi.org/10.1016/j.jsames.2023.104726
- O’Regan, G.; O’Regan. (2008). A brief history of computing. Springer.
- Page, W.D.; James, M.E. (1981). The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín, Colombia: Implications to tectonics and erosion rates. Revista CIAF, 6(1-3), 421-454.
- Paucar, C.; Saenz, E. (1995). Estudio de la evolución térmica del Batolito Antioqueño por huellas de fisión. Tesis de Pregrado, Universidad Nacional de Colombia, Medellín.
- Pérez-Consuegra, N.; Ott, R.F.; Hoke, G.D.; Galve, J.P.; Pérez-Peña, V.; Mora, A. (2021). Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Global and Planetary Change, 206, 103641. https://doi.org/10.1016/j.gloplacha.2021.103641
- Pike, R.J.; Rozema, W. (1975). Spectral analysis of landforms. Annals of the Association of American Geographers, 65(4), 499-516.
- Polikar, R. (2001). The Wavelet Tutorial–Fundamental Concepts & An Overview of the Wavelet Theory. IIT Delhi.
- Polikar, R.; Keinert, F.; Greer, M.H. (2001). Wavelet analysis of event related potentials for early diagnosis of Alzheimer’s disease. In: A.A. Petrosian, F.G. Meyer (eds.). Wavelets in Signal and Image Analysis: From Theory to Practice (pp. 453-478). Springer. https://doi.org/10.1007/978-94-015-9715-9_15
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. (2003). The Shuttle Radar Topography Mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241-262.
- Rendón-Rivera, A.dJ.; Caballero-Acosta, J.H.; Arias-López, A.; González-Patía, A.; Arenas-Rivillas, J.A.; Gallego, J.J. (2011). Estudio geológico-geomorfológico en el oriente cercano a Medellín, como apoyo a la búsqueda de actividad tectónica reciente. Boletín de Ciencias de la Tierra, 29, 39-54.
- Restrepo-Moreno, S.A. (2009). Long-term morphotectonic evolution and denudation chronology of the Antioqueño Plateau, Cordillera Central, Colombia. Tesis PhD, University of Florida.
- Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
- Restrepo-Moreno, S.A.; Foster, D.A.; Bernet, M.; Min, K.; Noriega, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. En: F. Cediel, R.P. Shaw (Eds.). Geology and Tectonics of Northwestern South America: (pp. 749-832). Springer. https://doi.org/10.1007/978-3-319-76132-9_11
- Restrepo, J.J.; Toussaint, J.F. (1982). Metamorfismos superpuestos en la Cordillera Central de Colombia. V Congreso Latinoamericano de Geología, Buenos Aires, Argentina.
- Rowe, A.C.; Abbott, P.C. (1995). Daubechies wavelets and mathematica. Computers in Physics, 9(6), 635-648. https://doi.org/10.1063/1.168556
- Saenz, E.A. (2003). Fission track thermochronology and denudational response to tectonics in the north of The Colombian Central Cordillera. Thesis MSc., Shimane University Japan.
- Salazar, S.; González, L.H.; Arias, L.A. (2008). Litoestratigrafía y pedoestratigrafía de los depósitos recientes en el Altiplano de Santa Rosa de Osos (ASRO). Boletín de Ciencias de la Tierra, 23, 21-32.
- Saunders, S.C.; Chen, J.; Drummer, T.D.; Gustafson, E.J.; Brosofske, K.D. (2005). Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecological Complexity, 2(1), 87-105. https://doi.org/10.1016/j.ecocom.2004.11.002
- Shirzaei, M. (2012). A wavelet-based multitemporal DInSAR algorithm for monitoring ground Surface motion. IEEE Geoscience and Remote Sensing Letters, 10(3), 456-460. https://doi.org/10.1109/LGRS.2012.2208935
- Si, B.C. (2008). Spatial scaling analyses of soil physical properties: A review of spectral and wavelet methods. Vadose Zone Journal, 7(2), 547-562. https://doi.org/10.2136/vzj2007.0040
- SRTM (2000). National Geospatial-Intelligence Agency (NGA) y la National Aeronautics and Space Administration (NASA), Endeavour.
- Stark, C.; Stewart, J.; Ebinger, C.J. (2003). Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics. Journal of Geophysical Research: Solid Earth, 108(B12). https://doi.org/10.1029/2001JB000609
- Stepinski, T.F.; Jasiewicz, J. (2011). Geomorphons-a new approach to classification of landforms. Proceedings of Geomorphometry, 211, 109-112.
- Summerfield, M.A. (2005). The changing landscape of geomorphology. Earth Surface Processes and Landforms, 30(6), 779-781. https://doi.org/10.1002/esp.1250
- Szypuła, B. (2019). Quality assessment of DEM derived from topographic maps for geomorphometric purposes. Open Geosciences, 11(1), 843-865. https://doi.org/10.1515/geo-2019-0066
- Telesca, L.; Lapenna, V.; Alexis, N. (2004). Multiresolution wavelet analysis of earthquakes. Chaos, Solitons & Fractals, 22(3), 741-748. https://doi.org/10.1016/j.chaos.2004.02.021
- Viles, H. (2016). Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology, 270, 121-133. https://doi.org/10.1016/j.geomorph.2016.07.011
- Vinasco, C.J.; Cordani, U.G.; Gonzalez, H.; Weber, M.; Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371.
- Wang, C.; Yang, Q.; Jupp, D.L.B.; Pang, G. (2016). Modeling change of topographic spatial structures with DEM resolution using semi-variogram analysis and filter bank. ISPRS International Journal of Geo-Information, 5(7), 107. https://doi.org/10.3390/ijgi5070107
- Wilson, J.P.; Gallant, J.C. (2000). Digital terrain analysis. Terrain analysis: Principles and applications, 6(12), 1-27.
- Wood, J. (1996). The geomorphological characterisation of digital elevation models. Tesis PhD. University of Leicester, United Kingdom.
- Xiong, L.; Li, S.; Tang, G.; Strobl, J. (2022). Geomorphometry and terrain analysis: Data, methods, platforms and applications. Earth-Science Reviews, 233, 104191. https://doi.org/10.1016/j.earscirev.2022.104191
- Yu, J.; Karlsson, S. (2001). Local spectral analysis using wavelet packets. Circuits, Systems and Signal Processing, 20, 497-528. https://doi.org/10.1007/BF01201975
- Zapata, S.; Zapata-Henao, M.; Cardona, A.; Jaramillo, C.; Silvestro, D.; Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553
- Zatelli, P.; Antonello, A. (2002). New GRASS modules for multiresolution analysis with wavelets. Open Source GIS-GRASS Users Conference. Italia.