Vol. 30 No. 2 (2008): Boletín De Geología
Articles

PSEUDOTAQUILITAS Y EL CARÁCTER PALEOSÍSMICO DE UN SEGMENTO DEL SISTEMA DE FALLAS DE BUCARAMANGA (SFB), NORESTE DEL MUNICIPIO DE PAILITAS, DEPARTAMENTO DEL CESAR, COLOMBIA

Julián Andrés López Isaza
Bio
Mario Andrés Cuéllar Cárdenas
Bio
Jairo Alonso Osorio Naranjo
Bio
Luis Enrique Bernal Vargas
Bio
Elizabeth Cortés Castillo
Bio

How to Cite

López Isaza, J. A., Cuéllar Cárdenas, M. A., Osorio Naranjo, J. A., Bernal Vargas, L. E., & Cortés Castillo, E. (2008). PSEUDOTAQUILITAS Y EL CARÁCTER PALEOSÍSMICO DE UN SEGMENTO DEL SISTEMA DE FALLAS DE BUCARAMANGA (SFB), NORESTE DEL MUNICIPIO DE PAILITAS, DEPARTAMENTO DEL CESAR, COLOMBIA. Boletín De Geología, 30(2). Retrieved from https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/42

Abstract

 

The occurrence of pseudotachylites associated with cataclasites found in "pressure backs" constituted by rocks related to the Bucaramanga Gneiss, developed in the transpressive segments of the Bucaramanga Faults System (BFS) Relief demonstrates the paleoseismic character of this one to the Northeast of the Municipality of Pailitas - Cesar Department, Colombia. 

The pseudotachylites are characterized to appear as injection, cataclastic and fault veins, petrographycally conformed by lithic clasts, fine grain matrix, optically observable grains and amygdales. The origin from melting for the pseudotachylites is suggested by the textures of the veins, which are characterized to display cooling margins, injection veins, macroscopic and microscopic flow bands, biotite microlites in veins, plagioclase microlites of albitic composition, "glass plate" type fractures, potassium feldspar and plagioclase deformation, and cleared, corroded and concave edges; potassium feldspar and quartz recrystallized; lithics clasts wrapped by the matrix and amygdales.  

Keywords: Pseudotachylites, Bucaramanga Faults System, Paleoseismic character, Eastern Cordillera, Colombia.

Downloads

Download data is not yet available.

References

Allen, A. R. 1979. Mechanism of frictional fusion in fault zones. Journal of Structural Geology, 1(3): 231-243

Anderson, J. L., Osborne, R. H. and Palmer, D. F. 1983. Cataclastic rocks of the San Gabriel Faults – An expression of deformation at deeper crustal levels in the San Andreas Fault Zone. Tectonophysics, 98: 209-251

Barker, A. J. 1994. Introduction to Metamorphic textures and microstructures. Blackie Academic and Professional. Great Britain, 170 p

Barker, S. L. L. 2005. Pseudotachylyte-generating faults in Central Otago, New Zealand. Tectonophysics, 397: 211-223

Blenkinsop, T. 2000. Deformation Microstructures and Mechanism in Mineral and Rocks. Klewer Academic Publishers, Norwel (USA), 150 p

Chester, F. M., Friedman, M. and Logan, J. M. 1985. Foliated cataclasites. Tectonophysics, 111: 139-146

Clavijo, J. 1994. Mapa geológico de la Plancha 75, Aguachica. En proceso de publicación. Bucaramanga. Ingeominas

Cuéllar, M. A. 2007. Análisis estructural del segmento sur de la traza de la falla Santa Marta-Bucaramanga (FSMB), municipios de Pailitas y Curumaní - Departamento del Cesar, Colombia. Tesis de Maestría. Universidad Nacional de Colombia. 106 p

Curewitz, D. and Karson, J. F. 1999. Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland. Journal of Structural Geology. 21: 1693-1713.

Davidson, C., Davis, K. J., Bailey, C. M., Tape, C. H., Singleton, J. and Singer, B. 2003. Age, origin, and significance of brittle faulting and pseudotachylyte along the Coast shear zone, Prince Rupert, British Columbia. Geology, 31(1): 43-46

Di Toro, G. andPennacchioni, G. Teza, G. 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalities (Adamello Batholiths, Sourthern Alps). En: Ferré, E.C., Allen, J.L. and Lin, A. Pseudotachylytes and Seismogenic Friction: Current Research. Tectonophysics, 402 (1-4): 55-80.

Di Toro, G., Pennacchioni, G. and Teza, G. 2005. Can pseudotachylytes be use to infer earthquake source parameters?. An example of limitations in the study of exhumed faults. En: Ferré, E.C., Allen, J.L. and Lin, A. Pseudotachylytes and Seismogenic Friction: Current Research. Tectonophysics, 402 (1-4): 3-20.

Hanmer, S. 1987. Textural maps-units in quartzfeldespatic mylonitic rocks. Canadian Journal of Earth Sciences, 24: 2065-2073.

Higgins, M. W. 1971. Cataclastic Rocks. Geological Survey Professional Paper, 687

Hibbard, M. J. 1995. Petrography to petrogenesis. Prentice Hall. New Jersey, 587 p.

INGEOMINAS. 1988. Mapa Geológico de Colombia. Escala 1:1’500.000. Bogotá

INGEOMINAS-UIS. 2005. Compilación y levantamiento de la información cartográfica, geológica, geoquímica y geofísica de la Serranía de San Lucas. Acuerdo Específico Nº 004 complementario al Convenio Marco de Cooperación Nº 005 de 2005. Ingeominas. Bogotá.

INGEOMINAS-UIS. 2006. Mapa Geológico de la Plancha 55 “El Banco”. Bogotá

Julivert, M. 1968. Lexique Stratigraphyque International Amerique Latine Colombia (Premiere Partie). París, Francia. Centre National de la Recherche Scientifique, 5(4a), 651 p. Colombie.

Killick, A. M. 2003. Fault rock classification: An aid to structural interpretation in mine and exploration geology. South African Journal of Geology, 106: 395-402

Knipe, R. J. 1989. Deformation mechanism recognition from natural tectonics. Journal of Structural Geology, 11(1-2): 81-92

Lin, A. 1994a. Glassy pseudotachylyte veins from the Fuyun Fault Zone, Northwest China. Journal of Structural Geology, 16(1): 71-83

Lin, A. 1994b. Microlite morphology and Chemistry in Pseudotachylite, from the Fuyun Fault Zone, China. The Journal of Geology, 102(3): 317-329

Lin, A. 1996. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Engineering Geology, 43: 213-224