Vol. 39 No. 2 (2017): Boletín de Geología
Articles

PSEUDOACELERATION ELASTIC RESPONSE SPECTRA FROM SOIL LINEAR EQUIVALENT DYNAMIC ANALISYS IN CHIMBOTE – PERÚ ABSTRACT

Cecilio Morales
Instituto Geofísico del Perú (IGP). Lima, Perú.
Isabel Bernal
Instituto Geofísico del Perú (IGP). Lima, Perú.
Hernando Tavera
Instituto Geofísico del Perú (IGP). Lima, Perú.
Luz Arredondo
Instituto Geofísico del Perú (IGP). Lima, Perú.
Javier Oyola
Instituto Geofísico del Perú (IGP). Lima, Perú.

Published 2017-06-13

Keywords

  • elastics response spectrum,
  • seismic microzonation,
  • seismic zonation,
  • earthquake engineering,
  • design spectra

How to Cite

Morales, C., Bernal, I., Tavera, H., Arredondo, L., & Oyola, J. (2017). PSEUDOACELERATION ELASTIC RESPONSE SPECTRA FROM SOIL LINEAR EQUIVALENT DYNAMIC ANALISYS IN CHIMBOTE – PERÚ ABSTRACT. Boletín De Geología, 39(2), 31–47. https://doi.org/10.18273/revbol.v39n2-2017002

Altmetrics

Abstract

Nowadays in the seismic engineering filed several technics and methodologies have been developed with the main goal to estimate or predict the 1D acceleration response spectra of soil, all of them based in the upward propagation of shear waves from the underlying rock formation. For this reason, the principal aim of this research is determine the 1D surface soil response spectral acceleration in Chimbote and Nuevo Chimbote area at the north cost of Perú. For this purpose we use previous results from the “Seismic Zonation” project carried out previously in Chimbote and Nuevo Chimbote. The response spectra computation was performed through a linear equivalent dynamic analysis. For that, were selected 5 ground motion time series from worldwide earthquakes and artificial earthquakes simulated following internationals seismic codes guidelines. From these records, and using variations of Vs30 and sediment thickness from a seismic zoning map, we computed 56 response spectrums for each soil variation. These 56 acceleration response spectra were grouped into Vs30 and thickness ranges and compared with the National Seismic Code criteria and elastic design spectra from international codes for soil in similar conditions. From a qualitative evaluation, the methodology applied shows coherent results; we recommend for the study area 4 new elastic design spectra derived from E.030 recommendations and from the results of this research.

Downloads

Download data is not yet available.

References

  1. Aguiar, R. 2013. Microzonificación sísmica de Quito. Centro de Investigaciones Científicas, Universidad de Fuerzas Armadas ESPE. Quito, 217p.
  2. ASCE. 2010. Minimum design loads for buildings and other structures. American Society of Civil Engineers. Virginia, 658p.
  3. Borcherdt, R., and Gibbs, J. 1976. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66(2): 467-500.
  4. Darragh, R., and Shakal, A.F. 1991. The site response of two rock and soil station pairs to strong and weak ground motion. Bulletin of the Seismological Society of America, 81(5): 1885-1899.
  5. Halldorsson, B., and Papageorgiou, A. 2005. Calibration of the specific barrier model to earthquake of different tectonic regions. Bulletin of the Seismological Society of America, 95(4): 1276-1300.
  6. Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A., and Park, D. 2016. DEEPSOIL 6.1, User Manual. University of Illinois at Urbana-Champaign. Illinois, USA.
  7. Haskell, N. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1): 17-34.
  8. Hernández, J.J., Schmitz, M., Delavaud, É., Cadet, H., and Domínguez, J. 2011. Espectros de respuesta sísmica en microzonas de Caracas incluyendo efectos 1D, 2D y 3D. Revista de la Facultad de Ingeniería UCV, 26(2): 49-66.
  9. Idriss, I., and Sun, J. 1992. User´s Manual for SHAKE91, A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits. California, USA.
  10. Jarpe, S.P., Hutchings, L.J, Hauk, T.F., and Shakal, A.F. 1989. Selected strong and weak motion data from the Loma Prieta earthquake sequence. Seismological Research Letters, 60(4), 167-176.
  11. Kawase, H., and Aki, K. 1989. A study on the response of a soft basin for incident S, P and Rayleigh waves with special reference to the long duration observed in Mexico City. Bulletin of the Seismological Society of America, 79(5): 1361-1382.
  12. Kottke, A., and Rathje, E. 2008. Technical Manual for Strata. PEER Report 2008/10. University of California. Berkeley, USA.
  13. Kramer, S. 1996. Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, N.J. 653p.
  14. Matasovic, N., and Ordóñez, G. 2011. D-MOD2000 - A computer program for seismic response analysis of horizontally layered soil deposits, earthfill dams and solid waste landfills. User´s Manual. 182pp.
  15. Morales, C., Schmitz, M., y Pullammanappallil, S. 2015. Calibración del modelo geológico – geofísico del subsuelo de Barquisimeto y Cabudare a través de métodos sísmicos y la respuesta espectral en superficie. Boletín de Geología, 37(1), 57-66.
  16. Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quaterly Reports, Tokyo, pp. 25-33.
  17. Newmark, N., and Hall, W. 1982. Earthquake spectra and design. The Earthquake Engineering Research Institute. Berkely, 51p.
  18. Norma E-30. 2016. Diseño sismorresistente en el Perú. El Peruano. Lima, Perú. 32p.
  19. Pacific Earthquake Engineering Research Center. 2011. Users Manual for the PEER Ground Motion Database Web Application. California, USA.
  20. Pagliaroli, A., Moscatelli, M., Raspa, G., and Naso, G. 2014. Seismic microzonation of the central archeological area of Rome: Results and uncertainties. Bulletin of Earthquake Engineering, 12(3): 1405-1428.
  21. Papageorgiou, A.S., and Kim, J. 1991. Study of the propagation and amplification of seismic waves in Caracas Valley with reference to the 29 July 1967 earthquake: SH waves. Bulletin of the Seismological Society of America, (81)6: 2214-2233.
  22. Rocabado, V., Schmitz, M., Hernández, J.J y Morales, C. 2011. Relación entre período del suelo y profundidad de los sedimentos para la ciudad de Caracas, Venezuela. Revista de la Facultad de Ingeniería UCV, 26(2), 141-152.
  23. Sánchez-Sesma, F., Chávez-Pérez, S., Suárez, M., Bravo, M.A., and Pérez-Rocha, L.E. 1988. The Mexico Earthquake of September 19, 1985 - On the seismic response of the Valley of Mexico. Earthquake Spectra, 4(3): 569-589.
  24. Schmitz, M., Hernández J.J., Morales, C., Domínguez, J., Rocabado, V., Vallé, M., Tagliaferro, M., Delavaud, É., Singer, A., Amarís, E., Molina, D., González, M., Leal, V., y el Grupo de Trabajo del proyecto de Microzonificación Sísmica de Caracas, 2011. Principales resultados y recomendaciones del proyecto de microzonificación sísmica en Caracas. Revista de la Facultad de Ingeniería UCV, 26(2): 113-127.
  25. Schnabel, P., Lysmer, J., and Seed, H. 1972. SHAKE - A computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center, University of California. Berkeley, USA.
  26. Seed, H.B., and Idriss, I.M. 1970. Soil moduli and damping factors for dynamic response analyses. Report No. EERC 70-10, Earthquake Engineering Research Center, University of California. Berkely, USA.
  27. Tavera, H. 2014a. Zonificación Sísmica – Geotécnica de la ciudad de Chimbote Provincia de Santa – Departamento de Ancash (Comportamiento Dinámico del Suelo). Programa Presupuestal N°068: Reducción de la Vulnerabilidad y Atención de Emergencias por Desastres. Lima, Perú.
  28. Tavera, H. 2014b. Zonificación Sísmica – Geotécnica de la ciudad de Nuevo Chimbote Provincia de Santa – Departamento de Ancash (Comportamiento Dinámico del Suelo). Programa Presupuestal N°068: Reducción de la Vulnerabilidad y Atención de Emergencias por Desastres. Lima, Perú.