Vol. 28 No. 2 (2006): Boletin de Geología
Articles

VULCANITES FROM S-SE OF COLOMBIA, ALKALINE BACK-ARC AND THEIR POSSIBLE RELATIONSHIP TO AN ASTENOPHERIC WINDOW

Published 2010-08-17

How to Cite

Borrero, C., & Castillo, H. (2010). VULCANITES FROM S-SE OF COLOMBIA, ALKALINE BACK-ARC AND THEIR POSSIBLE RELATIONSHIP TO AN ASTENOPHERIC WINDOW. Boletín De Geología, 28(2). Retrieved from https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/855

Abstract

The Neogene volcanism outcropping to the south of 2°N Latitude at the Upper Magdalena Valley in the Huila department and the Northwestern of Putumayo department (Colombia) defines a volcanic back-arc with monogenetic pyroclastic cones and rings associated to lava flows and pyroclastic fall deposits. The composition according to the TAS classification include basanites, alkaline basalts, nephelinites, trachyandesites, and in lesser proportion basaltic andesites. The back-arc volcanism was geochemically compared with the calc-alkaline Quaternary volcanoes that define the southern Colombian front arc (Chiles, Cumbal, Azufral, Galeras, Bordoncillo - Campanero y Doña Juana volcanoes). The alkaline volcanism has contents of TiO2 from 1,24 to 2.46% in wt. and the distribution tendency of major elements in the Harker diagrams is similar to the OIB-Type basalts, especially comparable to the volcanic rocks of the Central European Volcanic Province. This volcanism is possibly the result of the Carnegie Ridge collision since 8 Ma, with the Malpelo Rift coupled, against the Colombian Trench. This collision permitted the formation of slab window into the subducted Nazca plate, where the astenopheric mantle passes through of this window and possibly was the source of the OIB-type magmas in the Southern Colombia. This collision modified the geodynamic structure of this area evidenced by the strong change in style of the front arc in the southern Colombia and the northern Equator.

 

Keywords: Alkaline volcanism, Southern Colombia, Carnegie Ridge, Malpelo Rift, Back-arc.

Downloads

Download data is not yet available.

References

Abratis, M. and Wörner, G. (2001), Ridge collision, slabwindow formation, and the flux of Pacific astenosphereinto the Caribbean realm. Geology v. 29 no. 2: 127-130

Bellon, H., Aguillon-Robles, A., Calmus, T., Maury, R.C.,Bourgois, J. and Cotton, J. (2006), La Purísima volcanicfield, Baja California Sur (Mexico): Miocene to Quaternaryvolcanism related to subduction and opening of anastenospheric window. Journal of. Volcanology andGeothermal Research. 152: 253-272

Bourdon, E., Eissen, J.P., Gutscher, M.A., Monzier, M.,Hall, M. and Cotton, J. (2003), Magmatic response to earlyaseismic ridge subduction: the Ecuadorian margin case(South America), Earth and Planetary Science Letters. 205:123-138.

Bourgois, J. and Michaud, F. (2002), Comparisonbetween the Chile and Mexico triple junction areassubstantiates slab window development beneathnorthwestern Mexico during the past 12-10 Myr. Earthand Planetary Science Letters 201: 35-44

Cortés, G. P. y Calvache, L.M. (2002), Formación LosPastos, Catálogo de las Unidades Litoestratigráficas deColombia Neógeno, Cordillera Central Departamento deNariño, INGEOMINAS Bogotá, 43 pp

Droux, A. and Delaloye, M. (1996), Petrography andGeochemistry of Plio-Quaternary Calc-Alkaline volcanoesof Southwestern Colombia, Journal of South AmericanEarth Sciences Vol 9 Nos.1/2: 27-41

Guivel, C., Morata, D., Pelleter E., Espinoza, F., Maury,R., Lagabrielle, Y., Polve, M., Bellon, H., Cotten, J., Benoit,M., Suarez, M, and De La Cruz, R.(2006). Miocene to LateQuaternary Patagonian basalts (46-47°S):Geochronometric and geochemical evidence for slabtearing due to active spreading ridge subduction. Journalof. Volcanology and Geothermal Research 149: 349-370

Gutscher, M.A., Malavieille, J. and Collot, J.-Y. (1999),Tectonic segmentation of the North Andean margin:impact of the Carnegie Ridge Collision, Earth andPlanetary Science Letters 168: 255-270

Hildreth, W., Fierstein, J, Siems ,D. F., Budahn, J. R. andRuíz ,J. (2004), Rear-arc vs. arc-front volcanoes in theKatmai reach of the Alaska, Peninsula: a critical appraisalof across-arc compositional variation, Contrib MineralPetrol 147: 243–275 DOI 10.1007/s00410-004-0558-2

Ingeominas (1999), Mapa Geológico Esc: 1:500.000, to-mado del Atlas Colombiano de Información Geológica-Minera para inversión (ACIGEMI), CD-ROM

Irvine, T.N. and Baragar, W.R.A. (1971), A guide to thechemical classification of the common volcanic rocks.Canadian Journal of Earth Sciences 8: 523-548

Jung, S. and Masberg, P. (1998), Major-and trace-element systematics and isotope geochemistry ofCenozoic mafic volcanic rocks from the Vogelsberg (Cen-tral Germany) Constraints on the origin of continentalalkaline and tholeiitic basalts and their mantle sources.Journal of. Volcanology and Geothermal Research 86:151-177.

Jung, S., Pfänder, J.A., Brugmann, G. and Stracke, A.(2005) Sources of primitive alkaline volcanic rocks fromthe Central European Province (Rhön, Germany) inferredfrom Hf, OS and Pb isotopes, Contrib Mineral Petrol 150:546-549

Kroonemberg, S., Leon, A., Pastana, J.M. y Pessoa, M.(1981), Ignimbritas Pliopleistocénicas en el Suroeste delHuila, Colombia y su influencia en el desarrollomorfológico, Mem. Primer Seminario sobre el Cuaternarioen Colombia, Revista CIAF Vol 6. Nos. 1-3: 293-314

Kroonenberg, S., Pichler, H and Diederix, H.,(1982),Cenozoic alkalibasaltic to ultrabasic volcanism in theuppermost magdalena valley, Southern Huila department,Colombia, Geología Norandina 5: 19-26