Mineral chemistry of biotites in gneisses from the Rio Urubú Metamorphic Suite outcropping in the Serra Repartimento, Central Guyana Domain in the Amazonian Craton, Brazil: petrogenetic implications
Published 2019-01-08
Keywords
- Rio Urubú Metamorphic Suite,
- Mineral chemistry,
- Biotite,
- oxygen fugacity,
- Parental magma
How to Cite
Altmetrics
Abstract
Orthogneisses of the Paleoproteorozoic basement from the Rio Urubú Metamorphic Suite (RUMS), related to the posttransamazonic event, are widely distributed in the Central Guyana Domain (CGD) in the Amazonian Craton, northeastern Brazil. In this study, it was investigated the petrography, mineralogy and chemistry of biotites within the biotite-hornblende gneisses from the RUMS. It was also determined the formation conditions of these biotites and discuss the significance of these minerals in terms of petrogenesis. It can be classified through the results of petrography and mineral chemistry biotites into two distinct groups: 1) primary biotite classified as Bt-IA, less deformed, igneous appearance preserved and with no mineral orientation; 2) primary biotite with a tendency to re-equilibrated biotite, classified as Bt-IB, with low to moderate evidence of deformation and showing the main foliation of the rock and the gneissic structure, and being consistent with the tectono-metamorphic processes associated with shear zones that affected the CGD. Microprobe data show that the total Mg contents in less deformed biotite (Bt-IA) are higher, classified as Mg-biotites, while the deformed biotite (Bt-IB) presents higher Fe content and are classified as Fe-biotites. Results for strictly primary biotite indicate that the rocks of the RUMS are associated to granites originated from an I-type magma and calc-alkaline geochemical affinity, where these biotites crystallized at temperatures (T) de 720ºC – 760ºC, with oxygen fugacity (fO2) conditions of -12.71 and -13.66, Fe/(Fe + Mg) ratios ≥ 0.50, showing crystallization for these rocks around the NNO buffer, suggesting reducing conditions for the parental magma and also indicating a typical crust source for the magmas that contributed to the formation of these granites.
Downloads
References
Albuquerque, C.A.R. (1973). Geochemistry of biotites from granitic rocks, Northern Portugal. Geochimica et Cosmochimica Acta, 37(7), 1779-1802. doi: 10.1016/0016-7037(73)90163-4.
Almeida, F.F.M. de. (1978). A evolução dos crátons Amazônico e do São Francisco, comparada com a de seus homólogos do Hemisfério Norte. Congresso Brasileiro de Geologia, Vol. 6, Recife, Brasil.
Almeida, M.E. (2006). Evolução geológica da porção centro-sul do Escudo das Guianas com base no estudo geoquímico, geocronológico e isotópico dos granitóides paleoproterozóicos do sudeste de Roraima, Brasil. Tese de Doutorado. Centro de Geociências, Universidade Federal do Pará, Belém, Brasil.
Almeida, M.E., Ferreira, A.L, and Pinheiro, S.S. (2003). Associações graníticas do oeste do estado de Roraima, Domínio Parima, Escudo das Guianas, Brasil. Géologie de la France, 2-3-4, 134-159.
Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwartzwald (Germany). Lithos, 50(1-3), 51-73.
doi: 10.1016/S0024-4937(99)00052-3.
Ballesteros-Camaro, C.A. (2017). Geologia e gênese das ocorrências de Ti, Nb e ETR’s na Serra Repartimento, Roraima. Tese de Mestrado, Universidade Federal do Amazonas, Brasil.
Barbarin, B. (1990). Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal, 25(3-4), 227-238. doi: 10.1002/gj.3350250306.
Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605-626. doi: 10.1016/S0024-4937(98)00085-1.
Barriére, M., and Cotton, J. (1979). Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contributions to Mineralogy and Petrology, 70(2), 183-192. doi: 10.1007/BF00374447.
Beane, R.E. (1974). Biotite stability in the porphyry copper environment. Economic Geology, 69(2), 241-256.
Broska, I. (2003). REE accessory minerals in the felsic silicic rocks of the west-carpathians: their distribution, composition and stability. Acta mineralogica-petrographica, Abstract Series 1, 15.
Burkhard, D.J.M. (1993). Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geologie en Mijnbouw, 71(4), 337-349.
Chappell, B.W., and White, A.J.R. (1974). Two contrasting granite types. Pacific Geology, 8, 173-174.
Costa, U.A.P, Dantona, R.J.G., Neves, M.P., Splendor, F., Da Silva, M.B., and Abram, M.S. (2011). Petrografia de rochas anortosíticas do município de Iracema, Estado de Roraima. SBG, 12º Simpósio de Geologia da Amazônia. Boa Vista, Roraima, Brasil. Anais.
CPRM. (1999). Roraima Central, Folhas NA.20-X-Be NA.20-X-D (integrais) e folhas NA.20-XA, NA.20-X-C, NA.21-V-A e NA.21-V-C (parciais). Escala 1:500.000. Brasília. Serviço Geológico do Brasil, 166 p. CD-ROM.
Deer, W.A., Howie, R.A., and Zussman, J. (1966). An introduction to the rock-forming minerals. London: Longman.
Deer, W.A., Howie, R.A., and Zussman, J. (1997). RockForming Minerals: Single-chain silicates. London: Longman.
Dodge, F.C.W., and Moore, J.G. (1968). Occurrence and composition of biotites from the cartridge pass pluton of the Sierra Nevada Batholith, California. US Geological. Survey Profesional Paper, 600(B), 6-10.
Dymek, R.F. (1983). Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. American Mineralogist, 68(9-10), 880-899.
Figueiredo, R.F. (2016). Contexto tectônico do complexo alcalino Apiaú-Roraima: aerogeofísica, petrologia e geocronologia U-Pb. Tese de Mestrado, Instituto de Geociências, Universidade Estadual de Campinas, Brasil.
Figueiredo, R.F., and Santos, T.J.S. (2015). Integração de dados aerogeofísicos e geológicos do Complexo Alcalino Apiaú, próximo a região de Campos, Novos – Roraima. SBG, 14º Simpósio de Geologia da Amazônia. Marabá, Anais.
Foster, M.D. (1960). Interpretation of the Composition of Trioctahedral Micas. U.S Geological Survey Professional Paper, 354(B): 1-49.
Fraga, L.M.B. (1999). Geologia Estrutural. In: Programa de Levantamento Geológicos Básicos do Brasil. Roraima Central, Folhas NA.20-X-B e NA.20-X-D (inteiras), NA.20-X-A, NA.20-X-C, NA.21-V-A e NA.21-V-C (parciais). Escala 1:500.000. Estado do Amazonas, Brasília: CPRM, 1999. Relatório final, cap. 4, p. 117-128.
Fraga, L.M.B. (2000). Suíte Metamórfica de Rio Urubu. In: CPRM, Programa Levantamentos Geológicos Básicos – PLGB. Roraima Central, Folhas NA.20-X e NA.21-V, Estado de Roraima, escala 1:500.000. Brasília/SUREGMA, pp. 127-177. 1 CD-ROM.
Fraga, L.M.B. (2002). A associação AnortositoMangerito Granito Rapakivi (AMG) do Cinturão Guiana Central, Roraima, e suas encaixantes paleoproterozóicas: Evolução Estrutural, Geocronologia e Petrologia. Tese de doutorado, Universidade Federal do Pará, Brazil.
Fraga, L.M.B., Almeida, M.E., and Macambira, M.J.B. (1997a). First lead-lead zircon ages of charnockitic rocks from Central Guiana Belt (CGB) in the state of Roraima, Brazil. 1st South American Symposium on Isotope Geology, Campos do Jordão, São Paulo, Brasil.
Fraga, L.M.B., Araújo, R.V. de., and Duarte, B.P. (1997b). Igneous charnockitic rocks of the Kanuku Complex and Serra da Prata Suite in the Central Guiana Belt (CGB), Roraima State, Brazil. International Symposium on Granites and Associated Rocks, Salvador.
Fraga, L.M.B., Dall’agnol, R., Costa, J.B.S., and Macambira, M.J.B. (2009a). The mesoproterozoic mucajaí anorthosite–mangerite–rapakivi granite complex, Amazonian craton, Brazil. The Canadian Mineralogist, 47(6), 1469-1492.
Fraga, L.M.B., Macambira, M.J.B., Dall’agnol, R., and Costa, J.B.S. (2009b). 1.94 - 1.93 Ga charnockitic magmatism from the central part of the Guyana Shield, Roraima, Brazil: Single-zircon evaporation data and tectonic implications. Journal of South American Earth Sciences, 27(4), 247-257. doi:10.1016/j.jsames.2009.02.007.
Fraga, L.M.B., Nunes, N.S.V., and Riker S.R.L. (1994). Contribuição à Geologia da região do Rio Urubu: Um segmento do Cinturão de Cisalhamento Guiana Central. Congresso Brasileiro de Geologia, Vol. 38, Anais 2, Camboriú, Brasil.
Gaudette, H.E., Olszewski, W.J., and Santos, J.O.S.(1996). Geochronology of Precambrian rocks from the northern part of Guiana Shield, State of Roraima, Brazil. Journal of South American Earth Sciences, 9(3-4), 183-195. doi: 10.1016/0895-9811(96)00005-3.
Harrison, T.N. (1990). Chemical variation in micas from the Cairngorm pluton, Scotland. Mineralogical Magazine, 54(376), 355-366.
Hecht, L. (1994). The Chemical composition of biotite as an indicator of magmatic fractionation and metasomatism in Sn-specialised granites of the Fichtelgebirge (NW Bohemian Massif, Germany). In: R. Seltmann, H. Kämpf, P. Möller. Metallogeny of collisional orogens (pp. 295-300). Prague: Czech Geological Survey.
Heinonen, A., Fraga, L.M., Rämö, T., Dall’Agnol, R., Mänttäri, I., and Andersen, T. (2012). Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton - geochemical, U-Pb geochronological, and Nd-Hf-O isotopic constraints. Lithos, 151, 17-34. doi: 10.1016/j.lithos.2011.07.016.
Henry, D.J., Guidotti, C.V., and Thomson, J.A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316-328. doi:10.2138/am.2005.1498.
Ishihara, S. (1977). The magnetite-series and ilmeniteseries granitic rocks. Mining Geology, 27, 293-305.
Jacobs, D.C., and Parry, W.T. (1979). Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Economic Geology, 74(4), 860-887.
Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W. (2002). Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos, 63(3-4), 165-187.
Kretz, R. (1983). Symbols of rock-forming minerals. American Mineralogist, 68(1-2), 277-279.
Lalonde, A.E., and Bernard, P. (1993). Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories. Canadian Mineralogist, 31(1), 203-217.
Masoudi, F., and Jamshidi-Badr, M. (2008). Biotite and hornblende composition used to investigate the nature and thermobarometry of Pichagchi pluton, northwest Sanandaj-Sirjan metamorphic Belt, Iran. Journal of Sciences, Islamic Republic of Iran, 19(4), 329-338.
Mueller, R.F. (1972). Stability of biotite: A discussion. American Mineralogist, 57(1-2), 300-316.
Nachit, H., Ibhi, A., Abia, E.H., and Ohoud, M.B. (2005). Discrimination between primary magmatic biotites, reequilibrated and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415-1420.
doi: 10.1016/j.crte.2005.09.002.
Nachit, H., Razafimahefa, N., Stussi, J.M., and Carron, J.P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus de l’Académie des Sciences, 301(11), 813-818
Noyes, H.J., Wones, D.R., and Frey, F.A. (1983). A tale of two plutons: petrographic and mineralogic constraints on the petrogenesis of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. The Journal of Geology, 91(4), 353-378.
Petro, W.L., Vogel, T.A., and Wilband, J.T. (1979). Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chemical Geology, 26(3-4), 217- 235.
Reis, N.J., Faria, M.S.G., Almeida, M.E., and Oliveira, M.A. (2004). Folhas NA.20-Boa Vista e NB.20-Roraima. In: C. Schobbenhaus, J.H. Gonçalves, J.O.S. Santos, M.B. Abram, R. Leão Neto, G.M.M. Matos, R.M. Vidotti, M.A.B., Ramos, J.D.A. Jesus (eds.). Carta geológica do Brasil ao milionésimo: Sistema de Informações Geográficas - SIG. Brasilia: Programa Geologia do Brasil. CPRM, CD-ROM.
Roberts, M.P., and Clemens, J.D. (1993). Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21(9), 825-828. doi:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2.
Rosa-Costa, L.T. (2006). Geocronologia 207Pb/206Pb, Sm-Nd, U-Th-Pb E 40Ar-39Ar do segmento Sudeste do escudo das Guianas: Evolução crustal e termocronologia do evento transamazônico. Tese de Doutoramento, Geoquímica e Petrologia, Universidade Federal do Pará, Belém, Brasil.
Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., and Fletcher, I.R. (2000). A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Research, 3(4), 453-488. doi: 10.1016/S1342-937X(05)70755-3.
Shabani, A.A.T., Lalonde, A.E., and Whalen, J.B.(2003). Composition of biotite from granitic rocks of the Canadian Appalachian Orogen: A potential tectonomagmatic indicator?. The Canadian Mineralogist, 41(6), 1381-1396.
Solie, D.N., and Su, S.C. (1987). An occurrence of Ba-rich micas from the Alaska Range. American Mineralogist, 72(9-10), 995-999.
Speer, J.A. (1984). Micas in igneous rocks. In: S.W. Bailey (ed.). Micas (pp. 299-356). Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, Madison, Wisconsin, USA.
Speer, J.A. (1987). Evolution of magmatic AFM mineral assemblages in granitoid rocks: The hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina. American Mineralogist, 72(9-10), 863-878.
Stussi, J.M., and Cuney, M. (1996). Nature of biotites from alkaline, calc-alkaline and peraluminuos magmas by Abdel-Fattah M. Abdel-Haman: A comment. Journal of Petrology, 37(5), 1025-1029.
Tarazona, C.A. (2015). Análise das petrotramas das rochas charnockíticas da Serra da Prata, Mucajaí/RR. Tese de Mestrado, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Brasil.
Tassinari, C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., and Lafon, J.M. (2000). The Amazonian craton. In: U.G. Cordani, E.J. Milani, A. Thomaz Filho, D.A. Campos (eds.). Tectonic evolution of South America (pp. 41-96). Rio de Janeiro.
Tassinari, C.C.G., and Macambira, M.J.B. (2004). A evolução tectônica do Cráton Amazônico. In: V. Mantesso-Neto, A. Bartorelli, C. Dal Ré Carneiro, B.B. Brito-Neves (eds.). Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida (pp. pp. 471-485). São Paulo: Beca.
White, A.J.R. (1979). Sources of granite magmas. Geological Society of America, Abstracts with Programs, 11(7), 539. White, A.J.R., and Chappell, B.W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: J.A. Roddick (ed.). Circum-Pacific Plutonic Terranes (pp. 21-34). Vol. 159. Boulder: Geological Society of America.
Wones, D.R. (1989). Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8), 744-749.
Wones, D.R., and Eugster, H.P. (1965). Stability of biotite: experiment, theory, and application. American Mineralogist, 50(9), 1228-1272.
Yavuz, F. (2003). Evaluating micas in petrologic and metallogenic aspect: I–definitions and structure of the computer program MICA+. Computer and Geosciences, 29(10), 1203-1213. doi: 10.1016/S0098-3004(03)00142-0.
Yavuz, F., Gültekin, A.H., Örgün, Y., Çelik, N., Karakaya, M.Ç., and Sasmaz, A. (2002). Mineral chemistry of barium- and titanium-bearing biotites in calc-alkaline volcanic rocks from the Mezitler area (Balιkesir Dursunbey), Western Turkey. Geochemical Journal, 36, 563-580.
Zhou, Z.X. (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica, 2(2), 59-70.