Vol. 40 Núm. 3 (2018): Boletín de Geología
Artículos

Petrogénesis y condiciones de cristalización del domo intracratérico del volcán Cerro Bravo, Colombia

Camilo Pinzón
Universidad de Caldas
Biografía
Juan Felipe Echeverri
Universidad de Caldas
Biografía
Hugo Murcia
Universidad de Caldas
Biografía
Dayana Schonwalder-Ángel
Nanyang Technological University
Biografía

Publicado 2018-09-25

Palabras clave

  • Anfíbol,
  • geotermobarometría,
  • cámaras magmática,
  • evolución magmática,
  • volcán poligenético

Cómo citar

Pinzón, C., Echeverri, J. F., Murcia, H., & Schonwalder-Ángel, D. (2018). Petrogénesis y condiciones de cristalización del domo intracratérico del volcán Cerro Bravo, Colombia. Boletín De Geología, 40(3), 67–84. https://doi.org/10.18273/revbol.v40n3-2018004

Altmetrics

Resumen

El volcán Cerro Bravo (VCB) es un volcán compuesto ubicado en la Cordillera Central de Colombia. Durante los 50 ka de evolución del volcán la actividad eruptiva ha variado entre erupciones plinianas y emisiones efusivas. Actualmente, el cráter se encuentra ocupado por un domo que representa la última fase eruptiva de la erupción más reciente. El domo presenta una mineralogía típica de rocas andesíticas-dacíticas, con cristales de plagioclasa, anfíbol
y piroxeno. La composición del anfíbol evidencia condiciones de cristalización entre 1 y 3,5 kba, de 800 a 950°C, de -5,3 a -6,8 fO2, y de 5,1 a 6,8 H2O wt.% en el fundido, mientras que en el piroxeno evidencia condiciones de 914 ±97°C y 18,5 ±9,2 Kba. Con base en estos resultados y en las relaciones mineralógicas, se puede establecer una historia de cristalización de la siguiente manera: Augita y enstatita fueron los primeros minerales en cristalizar (>20 – 30 km). Posteriormente hubo un ascenso hacia una cámara magmática ubicada entre 4,6 y 13,2 km donde comenzó la cristalización del anfíbol (a la base de la cámara cristalizó pargasita, y al techo edenita y magnesihornblenda). La disminución en la temperatura, presión y el contenido de calcio durante el ascenso del magma favorecieron la cristalización de labradorita, la cual fue variando hasta andesina. Los microlitos que hacen parte de la masa fundamental son evidencia de las últimas fases de cristalización producto de la descompresión magmática. Este estudio muestra las condiciones de cristalización que representan la última fase eruptiva de la erupción más reciente del VCB.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Acosta, J., Velandia, F., Osorio, J., Lonergan, L., and Mora, H. (2007). Strike-slip deformation within the Colombian Andes. Geological Society, London, Special Publications, 272, 303-319. doi:10.1144/GSL.SP.2007.272.01.16.

Aoki, K.I., and Shiba, I. (1973). Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6(1), 41-51. doi: 10.1016/0024-4937(73)90078-9.

Berlo, K., Blundy, J., Turner, S., and Hawkesworth, C. (2007). Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens, USA. Contributions to Mineralogy and Petrology, 154(3), 291-308. doi:10.1007/s00410-007-0194-8.

Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C., and Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852-1872.

Borrero, C.A., and Naranjo, J.L. (1990). Casabianca Formation: A Colombian example of volcanisminduced aggradation in a fluvial basin. Journal of Volcanology and Geothermal Research, 41(1), 253-267. doi: 10.1016/0377-0273(90)90091-S.

Bourdon, E., Eissen, J., Gutscher, M., Monzier, M., Hall, M., and Cotten, J. (2003). Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth and Planetary Science Letters, 205(3-4), 123-138. doi: 10.1016/S0012-821X(02)01024-5.

Browne, B., and Gardner, J. (2006). The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth and Planetary Science Letters, 246(3-4), 161-176. doi: 10.1016/j.epsl.2006.05.006.

Calvache, M., Williams, S.N., and Young, R.H. (1987). Distribution and volumes of deposits and dynamics of eruptions of Nevado del Ruiz and Cerro Bravo volcanoes, Colombia, over the past 2100 years (abs.). EOS Earth & Space Science News, 67(16), 405.

Cárdenas, P. (2004). Modelo y cartografía estructural del sistema de fallas de Palestina en sector del Parque Natural de los Nevados. Tesis, Universidad de Caldas, Manizales, Colombia.

Cárdenas, P., Ocampo, P., Cocuy, C., Garcés, J., y Marín, L. (2004). Modelo y cartografía estructural del sistema de fallas de Palestina y Mulatos. INGEOMINAS, Bogotá.

Cashman, K. (1993). Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contributions to Mineralogy and Petrology, 113(1), 126-142. doi: 10.1007/BF00320836. CHEC. (1983). Investigación geotérmica Macizo Volcánico del Ruiz. Informe Final. Central Hidroeléctrica de Caldas.

Cortés, J. (2015). CFU-PINGU. Consultado el 15 de junio de 2017. https://vhub.org/resources/cfupingu.2015.

Eggler, D. (1972). Amphibole stability in H2O –undersaturated calc-alkaline melts. Earth and Planetary Science Letters, 15(1), 28-34. doi:10.1016/0012-821X(72)90025-8.

Eggler, D., and Burnham, C. (1973). Crystallization and fractionation trends in the system andesite-H2O-CO2-O2 at pressures to 10 Kb. Geological Society of America Bulletin, 84, 2517-2532.

Ginibre, C., and Wörner, G. (2007). Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos, 98(1-4), 118-140. doi: 10.1016/j.lithos.2007.03.004.

González, L., y Jaramillo, C. (2002). Estudio neotectónico multidisciplinario aplicado a la falla Villamaría-Termales. Tesis, Departamento de Ciencias Geológicas, Universidad de Caldas, Manizales, Colombia.

Guzmán, J., Franco, G., Ochoa, M., Paris, G., y Taboada, A. (1998). Proyecto para la mitigación del riesgo sísmico de Pereira Dosquebradas y Santa Rosa de Cabal: Evaluación neotectónica. Informe Final, Corporación Autónoma Regional de Risaralda, Pereira, Colombia.

Izbekov, P., Eichelberger, J., Patino, L., Vogel, T., and Ivanov, B. (2002). Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology, 30(9), 799-802. doi: 10.1130/0091-7613(2002)030<0799:CCOPPI>2. 0.CO;2.

Janoušek, V., Farrow, C., and Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259. doi: 10.1093/petrology/egl013.

Jordan, T., Isacks, B., Allmendinger, R., Brewer, J., Ramos, V., and Ando, C. (1983). Andean tectonics related to geometry of subducted Nazca plate. GSA Bulletin, 94, 341-361.

Laeger, K., Halama, R., Hansteen, T., Savov, I.P., Murcia, H.F., Cortés, G.P., and Garbe-Schönberg, D. (2013). Crystallization conditions and petrogenesis of the lava dome from the ∼900 years BP eruption of Cerro Machín Volcano, Colombia. Journal of South American Earth Sciences, 48, 193-208. doi: 10.1016/j.jsames.2013.09.009.

Leake, B., Woolley, A., Arps, C., Birch, W., Gilbert, M., Grice, J., Hawthorne, E., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G. (1997). Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of
Mineralogy, 9(3), 623-651. doi: 10.1127/ejm/9/3/0623.

Lescinsky, D. (1990). Geology, volcanology and petrology of Cerro Bravo, a young dacitic stratovolcano in west–central Colombia. MSc Thesis, Lousiana State University, Baton Rouge, USA.

Londoño, J. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156-168. doi: 10.1016/j.jvolgeores.2016.06.003.

Maksimov, A. (2009). The influence of water on the temperature of amphibole stability in melts. Journal of Volcanology and Seismology, 3(1), 27-33. doi: 10.1134/S0742046309010035.

Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J., and Traineau, H. (1999). Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. Journal
of Geophysical Research: Solid Earth, 104(B12), 29453-29470. doi: 10.1029/1999JB900191.

Martínez, T., Valencia, R., Ceballos, H., Narváez, M., Pulgarín, A., Correa, T., Navarro, A., Murcia, A., Zuluaga, M., Rueda, G., y Pardo, V. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final, Bogotá – Manizales – Popayán. Servicio Geológico Colombiano.

Mejía, E., Velandia, F., Zuluaga, C., López, J., y Cramer, T. (2012). Análisis estructural al noreste del volcán Nevado del Ruíz, Colombia - Aporte a la exploración geotérmica. Boletín de Geología, 34(1), 27-41.

Monsalve, M.L. (1991). Mapa preliminar de amenaza volcánica del volcán Cerro Bravo. INGEOMINAS. Manizales.

Monsalve, M.L., y Nuñez, A. (1992). El volcán Cerro Bravo, geología y amenaza volcánica. Revista INGEOMINAS, 1, 2-9. Morimoto, N. (1989). Nomenclature of pyroxenes.
Mineralogical Journal, 14(5), 198-221. doi: 10.2465/minerj.14.198.

Murcia, H., Borrero, C., and Németh, K. (in press). Overview and plumbing system implications of the monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research. doi: 10.1016/j.jvolgeores.2018.06.013.

O’Neill, H., and Pownceby, M. (1993). Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers,and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114(3), 296-314. doi: 10.1007/BF01046533.

Putirka, K.D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1), 61-120.

Rahman, S., and MacKenzie, W. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Journal of Science, 267, 391-406.

Rayo-Rocha, L. (2012). Evolución geoquímica y térmica del volcán Nevado del Ruiz, Colombia. Tesis de Magister, Universidad Nacional de Colombia, Bogotá, Colombia.

Rayo-Rocha, L., y Zuluaga, C. (2011). Procesos magmáticos en el volcán Nevado del Ruiz: Un análisis cuantitativo textural. Boletín de Geología, 33(2), 59-72.

Ridolfi, F., Renzulli, A., and Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45-66. doi: 10.1007/s00410-009-0465-7.

Rutherford, M., and Devine, J. (1988). The May 18, 1980, eruption of Mount St. Helens, 3, Stability and chemistry of amphibole in the magma chamber. Journal of Geophysical Research: Solid Earth, 93(B10), 11949-11959. doi: 10.1029/JB093iB10p11949.

Rutherford, M., and Hill, P. (1993). Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11), 19667-19685. doi: 10.1029/93JB01613.

Rutherford, M., Sigurdsson, H., Carey, S., and Davis, A. (1985). The May 18, 1980, eruption of Mount St. Helens: 1. Melt composition and experimental phase equilibria. Journal of Geophysical Research: Solid Earth, 90(B4), 2929-2947. doi: 10.1029/JB090iB04p02929.

Sekine, T., Katsura, T., and Aramaki, S. (1979). Water saturated phase relations of some andesites with application to the estimation of initial temperature and water pressure at the time of eruption. Geochimica et Cosmochimica Acta, 43(8), 1367-1376.

Shcherbakov, V., Plechov, P., Izbekov, P., and Shipman, J. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1), 83-99. doi: 10.1007/s00410-010-0584-1.

Singer, B., Dungan, M., and Layne, G. (1995). Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. American Mineralogist, 80(7-8), 776-798. doi:10.2138/am-1995-7-819.

Stechern, A., Just, T., Holtz, F., Blume-Oeste, M., and Namur, O. (2017). Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile). Evidence for multiple magma storage regions. Journal of Volcanology and Geothermal Research, 338, 25-45. doi: 10.1016/j.jvolgeores.2017.03.018.

Stern, C., Futa, K., and Muehlenbachs, K. (1984). Isotope and trace element data for orogenic andesites from the Austral Andes. In: R.S. Harmon, B.A. Barreiro (eds.). Andean Magmatism (pp. 31-46). Birkhäuser Boston.

Thouret, J. (1989). Geomorfología y crono-estratigrafía del Macizo Volcánico Ruiz-Tolima (Cordillera Central Colombiana). En: T. van der Hammen, S. Díaz-Piedrahita, V.J. Alvarez (eds.). Estudios de ecosistemas tropandinos, La Cordillera Central Colombiana, Transecto Parque Los Nevados (pp. 257-277). Berlin.

Thorpe, R., Francis, P., and O’Callaghan, L. (1984). Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society a Mathematical, Physical and Engineering Sciences, 310(1514), 675-692. doi: 10.1098/rsta.1984.0014.

Tsuchiyama, A. (1985). Dissolution kinetics of plagioclase in the melt of the system diopsidealbite-anorthite, and origin of dusty plagioclase in andesites. Contributions to Mineralogy and Petrology, 89(1), 1-16. doi: 10.1007/BF01177585.

Vernon, R., Johnson, S., and Melis, E. (2004). Emplacement-related microstructures in the margin of a deformed pluton: the San José tonalite, Baja California, México. Journal of Structural Geology, 26(10), 1867-1884. doi: 10.1016/j.jsg.2004.02.007.

Vesga, C., y Barrero, D. (1978). Edades K/Ar en rocas ígneas y metamórficas de la Cordillera Central de Colombia y su implicación geológica. II Congreso Colombiano de Geología, Bogotá, Colombia.

Villagómez, D., and Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. doi: 10.1016/j. lithos.2012.12.008.

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. doi: 10.1016/j.lithos.2011.05.003.

Whitney, D., and Evans, B. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. doi: 10.2138/am.2010.3371.