Diseño conceptual de concentrador solar de disco parabólico para generar energía térmica de alta temperatura
Publicado 2021-12-10
Palabras clave
- Energía renovable,
- energía solar,
- ingeniería térmica,
- diseño conceptual
Cómo citar
Derechos de autor 2021 Universidad Industrial de Santander
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
La energía solar es la fuente de energía más abundante que debe utilizarse para afrontar la crisis energética mundial y reducir la acumulación de gases de efecto invernadero que influyen en el cambio climático. En esta investigación se diseña, de manera conceptual, un concentrador solar de disco parabólico para generar calor en el punto focal con una temperatura superior a los 400°C para aplicaciones múltiples como, generación de vapor, calentamiento de agua, cocción de alimentos o almacenamiento de calor. La metodología empleada se desarrolla en tres etapas: Definición del problema mediante la identificación de necesidades de los usuarios; determinación del concepto de solución mediante la evaluación de combinación de portadores de función de los componentes; y elección de la configuración, las dimensiones y los materiales, mediante la simulación del elemento esencial que es el disco parabólico con el software SolTrace.
Descargas
Referencias
- Ahmed, M. H., Giaconia, A., & Amin, A. M. A. (2017). Effect of solar collector type on the absorption system performance. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 304–309. https://doi.org/10.1109/ICRERA.2017.8191284
- Ahmed, S. M. M., Al-Amin, M. R., Ahammed, S., Ahmed, F., Saleque, A. M., & Abdur Rahman, M. (2020). Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy, 205, 230–240. https://doi.org/10.1016/j.solener.2020.05.007
- Asma, M., & Youssef, T. (2018). Modeling of The Parabolic trough Solar Field with Molten Salt for The Region of Tozeur in Tunisia. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 993–997. https://doi.org/10.1109/ICRERA.2018.8566976
- Bellos, E., & Tzivanidis, C. (2019). Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science, 71, 81–117. https://doi.org/10.1016/j.pecs.2018.11.001
- Bhave, A. G., & Kale, C. K. (2020). Development of a thermal storage type solar cooker for high temperature cooking using solar salt. Solar Energy Materials and Solar Cells, 208, 110394. https://doi.org/10.1016/j.solmat.2020.110394
- Cabeza, L. F., Solé, A., Fontanet, X., Barreneche, C., Jové, A., Gallas, M., Prieto, C., & Fernández, A. I. (2017). Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 185, 836–845. https://doi.org/10.1016/j.apenergy.2016.10.093
- Cagnoli, M., Falsig, J. J., Pagola, I., Peña-Lapuente, A., Sanchez, M., Savoldi, L., Villasante, C., & Zanino, R. (2020). Design methodology for a prototype helical receiver adopted in the MOSAIC solar bowl system. Solar Energy, 208, 905–916. https://doi.org/10.1016/j.solener.2020.08.012
- Capra, F. (2002). The hideen connections. Integrating the biological, cognitive and social mensions of the life into a science of sustainability (First edit). Doubleday.
- Chen, Q., & Wang, Y. (2020). Research Status and Development Trend of Concentrating Solar Power. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), 390–393. https://doi.org/10.1109/ICRERA49962.2020.9242893
- Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Agrawala, S., Bashmakov, I. A., Blanco, G., Broome, J., Bruckner, T., Brunner, S., Bustamante, M., Clarke, L., Creutzig, F., Dhakal, S., Dubash, N., Eickemeier, P., Farahani, E., Fischedick, M., Fleurbaey, M., Gerlagh, R., … Zwickel, T. (2014). Resumen para formuladores de políticas. In Instituto Internacional de Análisis de Sistemas Aplicados (IIASA) (Ed.), Cambio climático 2014: Mitigación del cambio climático. Contribución del Grupo de Trabajo III del IPCC al AR5 (p. 32). Prensa de la Universidad de Cambridge. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf
- El Moussaoui, N., Talbi, S., Atmane, I., Kassmi, K., Schwarzer, K., Chayeb, H., & Bachiri, N. (2020). Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC). Solar Energy, 201, 866–871. https://doi.org/10.1016/j.solener.2020.03.079
- Espinoza, C. A. (2013). Design methods in mechanical engineering. Atlantic International University.
- Espinoza, C. A. (2014). Metodología de investigación tecnológica (C. Espinoza Montes (ed.); Primera Ed). http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/1146/mit1.pdf?sequence=1&isAllowed=y
- Espinoza, C., Clemente, W., & Martinez, C. (2020). Meteorological variability and use of solar energy in the Mantaro Valley, Peru. International Journal of Renewable Energy Research, 10(3), 1307–1315. https://www.ijrer.org/ijrer/index.php/ijrer/article/view/11274
- Fuqiang, W., Zhennan, G., Jianyu, T., Lanxin, M., Zhenyu, Y., & Heping, T. (2016). Transient thermal performance response characteristics of porous-medium receiver heated by multi-dish concentrator. International Communications in Heat and Mass Transfer, 75, 36–41. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.028
- Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., & Linhua, L. (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314–1328. https://doi.org/10.1016/j.rser.2017.05.174
- Gonzales, J. (2012). Energías renovables. Editorial Reverté.
- Jones, E. S., Alden, R. E., Gong, H., Frye, A. G., Colliver, D., & Ionel, D. M. (2020). The Effect of High Efficiency Building Technologies and PV Generation on the Energy Profiles for Typical US Residences. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), 471–476. https://doi.org/10.1109/ICRERA49962.2020.9242665
- Megalingam, R. K., & Gedela, V. V. (2017). Solar powered automated water pumping system for eco-friendly irrigation. 2017 International Conference on Inventive Computing and Informatics (ICICI), 623–626. https://doi.org/10.1109/ICICI.2017.8365208
- Mekonnen, B. A., Liyew, K. W., & Tigabu, M. T. (2020). Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker. Case Studies in Thermal Engineering, 22, 100766. https://doi.org/10.1016/j.csite.2020.100766
- Naciones Unidas. (2017). La población mundial aumentará en 1.000 millones para 2030. Perspectivas de La Población Mundial 2017. https://www.un.org/development/desa/es/news/population/world-population-prospects-2017.html
- Nakata, C., & Hwang, J. (2020). Design thinking for innovation: Composition, consequence, and contingency. Journal of Business Research, 118, 117–128. https://doi.org/10.1016/j.jbusres.2020.06.038
- Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering Design. A Systematic Approach (Tercera E). Springer. https://doi.org/10.1109/9780470546338.ch33
- Riba, C. (2002). Diseño concurrente (Universidad Politecnica de Cataluña (ed.); Primera ed). Ediciones UPC.
- Salgado Conrado, L., Rodriguez-Pulido, A., & Calderón, G. (2017). Thermal performance of parabolic trough solar collectors. Renewable and Sustainable Energy Reviews, 67, 1345–1359. https://doi.org/10.1016/j.rser.2016.09.071
- Ulrich, K. T., & Eppinger, S. D. (2013). Diseño y desarrollo de productos (Quinta Edi). McGraw-Hill Interamericana.
- Wendelin, T., Dobos, A., & Lewandowski, A. (2013). SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems. In National Renewable Energy Laboratory (Issue October). NREL. https://www.nrel.gov/docs/fy14osti/59163.pdf
- Zou, B., Dong, J., Yao, Y., & Jiang, Y. (2017). A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis. Solar Energy, 147, 189–201. https://doi.org/10.1016/j.solener.2017.01.055