Vol. 22 Núm. 2 (2024): Fuentes, el reventón energético
Artículos

DETERMINACIÓN DE PERFILES HIDRODINÁMICOS Y TÉRMICOS DENTRO DE UN REACTOR PIROLÍTICO CARGADO CON CÁSCARA DE PALMA UTILIZANDO DINÁMICA DE FLUIDOS COMPUTACIONAL

Mariapaz Moreno-Pinilla
Universidad de América
Joan Sebastián Rueda-Castiblanco
Universidad de América, Bogotá, Colombia
Harvey Andrés Milquez-Sanabria
Universidad de América, Bogotá, Colombia
Jaime Eduardo Arturo-Calvache
Universidad de América, Bogotá, Colombia

Publicado 2024-11-02

Palabras clave

  • Tratamiento termoquímico,
  • Biomasa,
  • Reactor,
  • Medio poroso,
  • COMSOL

Cómo citar

Moreno-Pinilla, M. ., Rueda-Castiblanco, J. S., Milquez-Sanabria, H. A. ., & Arturo-Calvache, J. E. (2024). DETERMINACIÓN DE PERFILES HIDRODINÁMICOS Y TÉRMICOS DENTRO DE UN REACTOR PIROLÍTICO CARGADO CON CÁSCARA DE PALMA UTILIZANDO DINÁMICA DE FLUIDOS COMPUTACIONAL. Fuentes, El reventón energético, 22(2), 19–34. https://doi.org/10.18273/revfue.v22n2-2024002

Resumen

En esta investigación se realizó el modelamiento y simulación de un reactor pirolítico a escala de laboratorio con geometría tubular cargado con palmiste, utilizando el software COMSOL Multiphysics® V5.6; para el modelamiento se utilizaron las propiedades fisicoquímicas de la cáscara de palma encontradas en diferentes fuentes bibliográficas, así como las condiciones iniciales de flujo y concentraciones para estimar los perfiles hidrodinámicos, térmicos y cinéticos presentes en la absorción de la biomasa ingresada en el lecho fijo, contemplando condiciones isotérmicas y no isotérmicas. Los resultados indican que la formación de alquitrán se favorece a una temperatura de 723,15 a 773,15 K, con un tiempo de reacción de 10 a 12 min y la relación del cambio de geometría respecto a los perfiles térmicos e hidrodinámicos, estos concuerdan con las referencias consultadas y pueden ser utilizados como punto de partida para futuras investigaciones para comprender los fenómenos presentados dentro de un reactor de pirólisis.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abdullah, N., Sulaiman, F., & Aliasak, Z. (2015). Fast pyrolysis of oil palm shell (OPS). AIP Conference Proceedings, 1657(1), 040008. https://doi.org/10.1063/1.4915169
  2. Ahmad, R., Hamidin, N., Ali, U. F. M., & Abidin, C. Z. A. (2014). Characterization of bio-oil from palm kernel shell pyrolysis. Journal of Mechanical Engineering and Sciences, 7(1), 1134–1140. https://doi.org/10.15282/jmes.7.2014.12.0110
  3. Anaya-Aldana, R., and Molina Crespo, D. C. (2018). Economic and financial evaluation of alternatives for the use of raw material residues from an industrial oil palm extraction plant (Evaluación económica y financiera de las alternativas de uso de los residuos de la materia prima de una planta industrial de extracción de palma de aceite). Dictamen Libre, 1(22), 81–101. https://doi.org/10.18041/2619-4244/dl.22.5029
  4. Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. (2013). Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 59, 316–324. https://doi.org/10.1016/j.biombioe.2013.08.037
  5. Ayala-Ruíz, N., Malagón-Romero, D. H., & Milquez-Sanabria, H. A. (2022). Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production. Journal of Cleaner Production, 359, 132108. https://doi.org/10.1016/j.jclepro.2022.132108
  6. Basu, P. (2018). Chapter 5 - Pyrolysis. In Basu, P. (Ed.) Biomass Gasification, Pyrolysis and Torrefaction (Third Edition, pp. 147-176). Academic Press. https://doi.org/10.1016/B978-0-12-812992-0.00005-4
  7. Castiblanco-Urrego, O., & Milquez-Sanabria, H. A. (2021). Study and simulation of a gasifier with CO2 capture for the production of blue hydrogen from Colombian coal (Estudio y simulación de un gasificador con captura de CO2 para la producción de hidrógeno azul partiendo de carbón colombiano). Revista UIS Ingenierías, 20(4), 91–100. https://doi.org/10.18273/revuin.v20n4-2021007
  8. Chang, G., Huang, Y., Xie, J., Yang, H., Liu, H., Yin, X., & Wu, C. (2016). The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Conversion and Management, 124, 587–597. https://doi.org/10.1016/j.enconman.2016.07.038
  9. Ezeoha, S. L., Akubuo, C. O., & Ani, O. (2012). PROPOSED AVERAGE VALUES OF SOME ENGINEERING PROPERTIES OF PALM KERNELS. Nigerian Journal of Technology (NIJOTECH), 31(2), 167–173. https://www.nijotech.com/index.php/nijotech/article/view/10
  10. Fedepalma. (2021). Oil palm in Colombia (La palma de aceite en Colombia). https://publicaciones.fedepalma.org/index.php/anuario/article/view/13235/13024.
  11. Hussain, M., Zabiri, H., Tufa, L. D., Yusup, S., & Ali, I. (2022). A kinetic study and thermal decomposition characteristics of palm kernel shell using modelfitting and model-free methods. Biofuels, 13(1), 105–116. https://doi.org/10.1080/17597269.2019.1642642
  12. Kim, S. J., Jung, S. H., & Kim, J. S. (2010). Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresource Technology, 101(23), 9294–9300. https://doi.org/10.1016/j.biortech.2010.06.110
  13. Fono-Tamo, R. S., & Koya, O. A. (2013). Characterization of pulverised palm kernel shell for sustainable waste diversification. International Journal of Scientific and Engineering Research, 4(4), 43-50.
  14. Liu, B., Papadikis, K., Gu, S., Fidalgo, B., Longhurst, P., Li, Z., & Kolios, A. (2017). CFD modeling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Processing Technology, 164, 51–68. https://doi.org/10.1016/j.fuproc.2017.04.012
  15. Ministry for the ecological transition. (2020). ENERGY RECOVERY / THERMAL TREATMENTS. (VALORIZACIÓN ENERGÉTICA / TRATAMIENTOS TÉRMICOS). https://www.miteco.gob.es/en/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/domesticos/gestion/sistema-tratamiento/Incineracion.aspx
  16. Okoroigwe, E. C., Li, Z., Godwin Unachukwu, Stuecken, T., & Saffron, C. (2011). Thermochemical conversion of Palm Kernel Shell (PKS) to bioenergy. ASME 2011 5th International Conference On Energy Sustainability, Parts A, B, And C, 1183-1191. http://doi.org/10.1115/ES2011-54690
  17. Okoye, N. M., Nnaemeka Madubuike, C., Uba Nwuba, I., Orakwe, L. C., & Ugwuishiwu, O. B. 2018. Computational Fluid Dynamics Modeling of Residence Time Distribution in a Field-Scale Horizontal Subsurface Flow Constructed Wetland with Palm Kernel Shell as Substrate. World Scientific News, (109), 60-70.
  18. Pauls, J. H., Mahinpey, N., & Mostafavi, E. (2016). Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: A comprehensive model including pyrolysis, hydrodynamics and tar production. Biomass and Bioenergy, 95, 157–166. https://doi.org/10.1016/j.biombioe.2016.10.002
  19. Qureshi, K. M., Kay Lup, A. N., Khan, S., Abnisa, F., & Wan Daud, W. M. A. (2021). Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle size, pyrolysis time and vapor residence time. Cleaner Engineering and Technology, 4, 100174. https://doi.org/10.1016/j.clet.2021.100174
  20. Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Chapter 2 - Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. In Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (Eds.), A Thermo-Economic Approach to Energy From Waste (pp. 35–71). Elsevier. https://doi.org/10.1016/B978-0-12-824357-2.00006-1
  21. Reyes Rodriguez, D. A., Reyes Trejos, O. Y., & Camargo Vargas, G. de J. (2019). Evaluation of the pyrolysis and co-pyrolysis process of palm shell and waste tyres in a co2 atmosphere. Avances Investigación En Ingeniería, 16(2), 83-92. https://doi.org/10.18041/1794-4953/avances.2.5501
  22. Salcedo Díaz, R., & Martin-Gullon, I. (2012). Materials of the subject Fluid Mechanics (Materiales de la asignatura Mecánica de Fluidos). Capítulo 4, 1–50. http://rua.ua.es/dspace/handle/10045/20299
  23. Sánchez Alfonso, R. A., Duran Peralta, H. A., Aguiar Urriago, L. M., Uribe Aldana, N., & Rojas Forero, A. Y. V. (2018). Model for the Gasification of the Oil Palm Kernel Shell (Modelo para la gasificación del cuesco de palma aceitera). Ingenium, 18(36), 81–100. https://doi.org/10.21500/01247492.3433
  24. Sechage Cortés, J. S., Gómez Sandoval, D. L., Rodríguez Meléndez, A. G., & Mayorga Betancourt, M. A. (2017). Mathematical Modelingfor the Pyrolysis of the Oil Palm Kernel Shell (Modelamiento matemático para la pirolisis del cuesco de palma aceitera). Ingenium, 18(36), 44–56. https://doi.org/10.21500/01247492.3430
  25. Solanki, S., Baruah, B., & Tiwari, P. (2022). Modeling and simulation of wood pyrolysis process using COMSOL Multiphysics. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2021.100941
  26. Thoharudin, N., Chen, Y., & Hsiau, S. (2020). Numerical Studies on Fast Pyrolysis of Palm Kernel Shell in a Fluidized Bed Reactor. IOP Conference Series Materials Science And Engineering, 874(1), 012033. https://doi.org/10.1088/1757-899x/874/1/012033
  27. Tripathi, M., Sahu, J. N., Ganesan, P., & Jewaratnam, J. (2016). Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS. Applied Thermal Engineering, 105, 605–612. https://doi.org/10.1016/j.applthermaleng.2016.03.053
  28. Uddin, M.N., Techato, K,; Taweekun, J., Rahman, M.M., Rasul, M.G., Mahlia, T.M.I., & Ashrafur, S.M. (2018). An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies, 11, 3115. https://doi.org/10.3390/en11113115
  29. Van Dam, J. (2016). Oil Palm By-Products as Biomass Commodities (Subproductos de la palma de aceite como materias primas de biomasa). Palmas, 37, 149-156.
  30. Verdeza-Villalobos, A., Lenis-Rodas, Y. A., Bula-Silvera, A. J., Mendoza-Fandiño, J. M., & Gómez-Vásquez, R. D. (2019). Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells. CTyF - Ciencia, Tecnologia y Futuro, 9(2), 79–88. https://doi.org/10.29047/01225383.181
  31. Waluyo, J., Makertihartha, I. G. B. N., & Susanto, H. (2018). Pyrolysis with intermediate heating rate of palm kernel shells: Effect temperature and catalyst on product distribution. AIP Conference Proceedings, 1977(1), 020026. https://doi.org/10.1063/1.5042882
  32. Wijayanti, W., Musyaroh, Sasongko, M. N., Kusumastuti, R., & Sasmoko. (2021). Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics. Case Studies in Thermal Engineering, 28, 101625 https://doi.org/10.1016/j.csite.2021.101625
  33. Yakub, M., Abakr, Y. A., Kazi, F. K., Yusuf, S., Alshareef, I., & Chin, S. A. (2015a). Pyrolysis of Napier grass in a fixed bed reactor: Effect of operating conditions on product yields and characteristics. BioResources, 10(4), 6457-6478.
  34. Yakub, M. I., Abdalla, A. Y., Feroz, K. K., Suzana, Y., Ibraheem, A., & Chin, S. A. (2015b). Pyrolysis of Oil Palm Residues in a Fixed Bed Tubular Reactor. Journal of Power and Energy Engineering, 03(04), 185–193. https://doi.org/10.4236/jpee.2015.34026