DETERMINACIÓN DE PERFILES HIDRODINÁMICOS Y TÉRMICOS DENTRO DE UN REACTOR PIROLÍTICO CARGADO CON CÁSCARA DE PALMA UTILIZANDO DINÁMICA DE FLUIDOS COMPUTACIONAL
Publicado 2024-11-02
Palabras clave
- Tratamiento termoquímico,
- Biomasa,
- Reactor,
- Medio poroso,
- COMSOL
Cómo citar
Derechos de autor 2024 Fuentes, el reventón energético
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
En esta investigación se realizó el modelamiento y simulación de un reactor pirolítico a escala de laboratorio con geometría tubular cargado con palmiste, utilizando el software COMSOL Multiphysics® V5.6; para el modelamiento se utilizaron las propiedades fisicoquímicas de la cáscara de palma encontradas en diferentes fuentes bibliográficas, así como las condiciones iniciales de flujo y concentraciones para estimar los perfiles hidrodinámicos, térmicos y cinéticos presentes en la absorción de la biomasa ingresada en el lecho fijo, contemplando condiciones isotérmicas y no isotérmicas. Los resultados indican que la formación de alquitrán se favorece a una temperatura de 723,15 a 773,15 K, con un tiempo de reacción de 10 a 12 min y la relación del cambio de geometría respecto a los perfiles térmicos e hidrodinámicos, estos concuerdan con las referencias consultadas y pueden ser utilizados como punto de partida para futuras investigaciones para comprender los fenómenos presentados dentro de un reactor de pirólisis.
Descargas
Referencias
- Abdullah, N., Sulaiman, F., & Aliasak, Z. (2015). Fast pyrolysis of oil palm shell (OPS). AIP Conference Proceedings, 1657(1), 040008. https://doi.org/10.1063/1.4915169
- Ahmad, R., Hamidin, N., Ali, U. F. M., & Abidin, C. Z. A. (2014). Characterization of bio-oil from palm kernel shell pyrolysis. Journal of Mechanical Engineering and Sciences, 7(1), 1134–1140. https://doi.org/10.15282/jmes.7.2014.12.0110
- Anaya-Aldana, R., and Molina Crespo, D. C. (2018). Economic and financial evaluation of alternatives for the use of raw material residues from an industrial oil palm extraction plant (Evaluación económica y financiera de las alternativas de uso de los residuos de la materia prima de una planta industrial de extracción de palma de aceite). Dictamen Libre, 1(22), 81–101. https://doi.org/10.18041/2619-4244/dl.22.5029
- Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. (2013). Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 59, 316–324. https://doi.org/10.1016/j.biombioe.2013.08.037
- Ayala-Ruíz, N., Malagón-Romero, D. H., & Milquez-Sanabria, H. A. (2022). Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production. Journal of Cleaner Production, 359, 132108. https://doi.org/10.1016/j.jclepro.2022.132108
- Basu, P. (2018). Chapter 5 - Pyrolysis. In Basu, P. (Ed.) Biomass Gasification, Pyrolysis and Torrefaction (Third Edition, pp. 147-176). Academic Press. https://doi.org/10.1016/B978-0-12-812992-0.00005-4
- Castiblanco-Urrego, O., & Milquez-Sanabria, H. A. (2021). Study and simulation of a gasifier with CO2 capture for the production of blue hydrogen from Colombian coal (Estudio y simulación de un gasificador con captura de CO2 para la producción de hidrógeno azul partiendo de carbón colombiano). Revista UIS Ingenierías, 20(4), 91–100. https://doi.org/10.18273/revuin.v20n4-2021007
- Chang, G., Huang, Y., Xie, J., Yang, H., Liu, H., Yin, X., & Wu, C. (2016). The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Conversion and Management, 124, 587–597. https://doi.org/10.1016/j.enconman.2016.07.038
- Ezeoha, S. L., Akubuo, C. O., & Ani, O. (2012). PROPOSED AVERAGE VALUES OF SOME ENGINEERING PROPERTIES OF PALM KERNELS. Nigerian Journal of Technology (NIJOTECH), 31(2), 167–173. https://www.nijotech.com/index.php/nijotech/article/view/10
- Fedepalma. (2021). Oil palm in Colombia (La palma de aceite en Colombia). https://publicaciones.fedepalma.org/index.php/anuario/article/view/13235/13024.
- Hussain, M., Zabiri, H., Tufa, L. D., Yusup, S., & Ali, I. (2022). A kinetic study and thermal decomposition characteristics of palm kernel shell using modelfitting and model-free methods. Biofuels, 13(1), 105–116. https://doi.org/10.1080/17597269.2019.1642642
- Kim, S. J., Jung, S. H., & Kim, J. S. (2010). Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresource Technology, 101(23), 9294–9300. https://doi.org/10.1016/j.biortech.2010.06.110
- Fono-Tamo, R. S., & Koya, O. A. (2013). Characterization of pulverised palm kernel shell for sustainable waste diversification. International Journal of Scientific and Engineering Research, 4(4), 43-50.
- Liu, B., Papadikis, K., Gu, S., Fidalgo, B., Longhurst, P., Li, Z., & Kolios, A. (2017). CFD modeling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Processing Technology, 164, 51–68. https://doi.org/10.1016/j.fuproc.2017.04.012
- Ministry for the ecological transition. (2020). ENERGY RECOVERY / THERMAL TREATMENTS. (VALORIZACIÓN ENERGÉTICA / TRATAMIENTOS TÉRMICOS). https://www.miteco.gob.es/en/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/domesticos/gestion/sistema-tratamiento/Incineracion.aspx
- Okoroigwe, E. C., Li, Z., Godwin Unachukwu, Stuecken, T., & Saffron, C. (2011). Thermochemical conversion of Palm Kernel Shell (PKS) to bioenergy. ASME 2011 5th International Conference On Energy Sustainability, Parts A, B, And C, 1183-1191. http://doi.org/10.1115/ES2011-54690
- Okoye, N. M., Nnaemeka Madubuike, C., Uba Nwuba, I., Orakwe, L. C., & Ugwuishiwu, O. B. 2018. Computational Fluid Dynamics Modeling of Residence Time Distribution in a Field-Scale Horizontal Subsurface Flow Constructed Wetland with Palm Kernel Shell as Substrate. World Scientific News, (109), 60-70.
- Pauls, J. H., Mahinpey, N., & Mostafavi, E. (2016). Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: A comprehensive model including pyrolysis, hydrodynamics and tar production. Biomass and Bioenergy, 95, 157–166. https://doi.org/10.1016/j.biombioe.2016.10.002
- Qureshi, K. M., Kay Lup, A. N., Khan, S., Abnisa, F., & Wan Daud, W. M. A. (2021). Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle size, pyrolysis time and vapor residence time. Cleaner Engineering and Technology, 4, 100174. https://doi.org/10.1016/j.clet.2021.100174
- Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Chapter 2 - Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. In Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (Eds.), A Thermo-Economic Approach to Energy From Waste (pp. 35–71). Elsevier. https://doi.org/10.1016/B978-0-12-824357-2.00006-1
- Reyes Rodriguez, D. A., Reyes Trejos, O. Y., & Camargo Vargas, G. de J. (2019). Evaluation of the pyrolysis and co-pyrolysis process of palm shell and waste tyres in a co2 atmosphere. Avances Investigación En Ingeniería, 16(2), 83-92. https://doi.org/10.18041/1794-4953/avances.2.5501
- Salcedo Díaz, R., & Martin-Gullon, I. (2012). Materials of the subject Fluid Mechanics (Materiales de la asignatura Mecánica de Fluidos). Capítulo 4, 1–50. http://rua.ua.es/dspace/handle/10045/20299
- Sánchez Alfonso, R. A., Duran Peralta, H. A., Aguiar Urriago, L. M., Uribe Aldana, N., & Rojas Forero, A. Y. V. (2018). Model for the Gasification of the Oil Palm Kernel Shell (Modelo para la gasificación del cuesco de palma aceitera). Ingenium, 18(36), 81–100. https://doi.org/10.21500/01247492.3433
- Sechage Cortés, J. S., Gómez Sandoval, D. L., Rodríguez Meléndez, A. G., & Mayorga Betancourt, M. A. (2017). Mathematical Modelingfor the Pyrolysis of the Oil Palm Kernel Shell (Modelamiento matemático para la pirolisis del cuesco de palma aceitera). Ingenium, 18(36), 44–56. https://doi.org/10.21500/01247492.3430
- Solanki, S., Baruah, B., & Tiwari, P. (2022). Modeling and simulation of wood pyrolysis process using COMSOL Multiphysics. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2021.100941
- Thoharudin, N., Chen, Y., & Hsiau, S. (2020). Numerical Studies on Fast Pyrolysis of Palm Kernel Shell in a Fluidized Bed Reactor. IOP Conference Series Materials Science And Engineering, 874(1), 012033. https://doi.org/10.1088/1757-899x/874/1/012033
- Tripathi, M., Sahu, J. N., Ganesan, P., & Jewaratnam, J. (2016). Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS. Applied Thermal Engineering, 105, 605–612. https://doi.org/10.1016/j.applthermaleng.2016.03.053
- Uddin, M.N., Techato, K,; Taweekun, J., Rahman, M.M., Rasul, M.G., Mahlia, T.M.I., & Ashrafur, S.M. (2018). An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies, 11, 3115. https://doi.org/10.3390/en11113115
- Van Dam, J. (2016). Oil Palm By-Products as Biomass Commodities (Subproductos de la palma de aceite como materias primas de biomasa). Palmas, 37, 149-156.
- Verdeza-Villalobos, A., Lenis-Rodas, Y. A., Bula-Silvera, A. J., Mendoza-Fandiño, J. M., & Gómez-Vásquez, R. D. (2019). Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells. CTyF - Ciencia, Tecnologia y Futuro, 9(2), 79–88. https://doi.org/10.29047/01225383.181
- Waluyo, J., Makertihartha, I. G. B. N., & Susanto, H. (2018). Pyrolysis with intermediate heating rate of palm kernel shells: Effect temperature and catalyst on product distribution. AIP Conference Proceedings, 1977(1), 020026. https://doi.org/10.1063/1.5042882
- Wijayanti, W., Musyaroh, Sasongko, M. N., Kusumastuti, R., & Sasmoko. (2021). Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics. Case Studies in Thermal Engineering, 28, 101625 https://doi.org/10.1016/j.csite.2021.101625
- Yakub, M., Abakr, Y. A., Kazi, F. K., Yusuf, S., Alshareef, I., & Chin, S. A. (2015a). Pyrolysis of Napier grass in a fixed bed reactor: Effect of operating conditions on product yields and characteristics. BioResources, 10(4), 6457-6478.
- Yakub, M. I., Abdalla, A. Y., Feroz, K. K., Suzana, Y., Ibraheem, A., & Chin, S. A. (2015b). Pyrolysis of Oil Palm Residues in a Fixed Bed Tubular Reactor. Journal of Power and Energy Engineering, 03(04), 185–193. https://doi.org/10.4236/jpee.2015.34026