Vol. 22 Núm. 2 (2024): Fuentes, el reventón energético
Artículos

ANÁLISIS DE ALTERNATIVAS PARA LA SEPARACIÓN DE AGUA Y SALES DEL PETRÓLEO CRUDO EN LA SECCIÓN DE DESALINIZACIÓN DE UNA REFINERÍA COLOMBIANA

Juliana Parra Avendaño
Universidad de América
Jaime Eduardo Arturo-Calvache
Universidad de América
Stefanny Camacho-Galindo
Federal University of Rio de Janeiro
Juliana de Sá Guerreiro
Universidade Federal do Pará
Elizabete Fernandes Lucas
Federal University of Rio de Janeiro
Laura Estefanía Guerrero-Martin
Fundación de Educación Superior San José
Leyder Alejandro Prieto-Moreno
Universidad de América

Publicado 2024-12-11

Palabras clave

  • Desalinización,
  • Deshidratación,
  • Petróleo crudo,
  • Refinería colombiana,
  • Separador de fases,
  • Eficiencia de la desalinización,
  • Condiciones óptimas de trabajo
  • ...Más
    Menos

Cómo citar

Parra Avendaño, J., Arturo-Calvache, J. E., Camacho-Galindo, S., Guerreiro, J. de S., Fernandes Lucas, E., Guerrero-Martin, L. E., & Prieto-Moreno, L. A. (2024). ANÁLISIS DE ALTERNATIVAS PARA LA SEPARACIÓN DE AGUA Y SALES DEL PETRÓLEO CRUDO EN LA SECCIÓN DE DESALINIZACIÓN DE UNA REFINERÍA COLOMBIANA. Fuentes, El reventón energético, 22(2), 93–110. https://doi.org/10.18273/revfue.v22n2-2024007

Resumen

El objetivo de este artículo es presentar una propuesta para optimizar el desempeño del crudo desalado y deshidratado en una refinería colombiana, mejorando la separación de las fases presentes y asegurando que los niveles de sal y agua en el crudo saliente se mantengan constantes y dentro de las especificaciones. En primer lugar, se realiza un diagnóstico del estado actual del proceso. Luego, para evaluar el impacto de las variables relevantes sobre la eficiencia de desalación, se desarrolló un modelo matemático que permite reproducir, con un nivel razonable de precisión, los valores reales del proceso. A partir de este modelo, se determinaron las condiciones óptimas de operación. Se concluye que la principal limitante de la desalinización actual radica en la inadecuada caracterización de la carga de crudo, la baja eficiencia del tratamiento químico para el rompimiento de emulsiones y el alto contenido de sales e hidrocarburos en las aguas de lavado. Por tanto, se recomienda rediseñar los procedimientos de caracterización, inyección del tratamiento químico y manejo de las aguas de lavado para mejorar el rompimiento de las emulsiones y favorecer la coalescencia en las plantas desalinizadoras.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abdullah, M. M., Faqihi, N. A., Al-Lohedan, H. A., Almarhoon, Z. M., & Karami, A. M. (2023). Application of new oleate-based ionic liquids for effective breaking of water in oil emulsions. Fluid Phase Equilibria, 568, 113737. https://doi.org/10.1016/j.fluid.2023.113737
  2. Bowman, E., Jacobson, G., Koch, G., Varney, J., Thopson, N., Moghissi, O., ... & Payer, J. (2016). International Measures of Prevention. Application, and Economics of Corrosion Technologies Study, NACE International.
  3. Chen, J., Ni, Y., Gou, Y., Zhu, T., Sun, L., Chen, Z., Huang, J., Yang, D., & Lai, Y. (2024). Hydrophobic organogel sorbent and its coated porous substrates for efficient oil/water emulsion separation and effective spilled oil remediation. Journal of Hazardous Materials, 461, 132674. https://doi.org/10.1016/j.jhazmat.2023.132674
  4. da Cunha, P. S. M. D. (2008). Modelagem matemática do processo de desidratação eletrostática de petróleos [Master's Thesis]. Universidade Federal do Rio de Janeiro.
  5. Escandon Millan, N. (2023). Petroleum: Market analysis and its importance in the Colombian global economy [Doctoral dissertation]. Politecnico di Torino.
  6. Fuentes, J. F., Montes, D., Lucas, E. F., Montes-Paez, E. G., Szklo, A., & Guerrero-Martin, C. A. (2022). Nanotechnology applied to the inhibition and remediation of formation damage by fines migration and deposition: A comprehensive review. Journal of Petroleum Science and Engineering, 216, 110767. https://doi.org/10.1016/j.petrol.2022.110767
  7. Guoju, C. (2023). Study on the influence mechanism of oilfield chemicals on crude oil desalting. Petroleum Refinery Engineering, 53(5), 50.
  8. Hao, X., Elakneswaran, Y., Shimokawara, M., Kato, Y., Kitamura, R., & Hiroyoshi, N. (2024). Impact of the Temperature, Homogenization Condition, and Oil Property on the Formation and Stability of Crude Oil Emulsion. Energy & Fuels. 38(2), 979-994. https://doi.org/10.1021/acs.energyfuels.3c04034
  9. Kania, H. (2023). Corrosion and Anticorrosion of Alloys/Metals: The Important Global Issue. Coatings, 13(2), 216. https://doi.org/10.3390/coatings13020216
  10. Kiani, H., Moradi, S., Soulgani, B. S., & Mousavian, S. (2013). Study of a crude oil desalting plant of the national iranian south oil company in Gachsaran by using artificial neural networks. International Journal of Environmental and Ecological Engineering, 7(12), 1015-1018. https://doi.org/10.5281/zenodo.1089573
  11. Li, Z., Fuentes, J., Chakraborty, A., Zamora, E., Prasad, V., Vázquez, F., Xu, Z., Liu, Q., Flores, C., & McCaffrey, W. C. (2022). Dehydration of water-in-crude oil emulsions using polymeric demulsifiers: a model for water removal based on the viscoelastic properties of the oil–water interfacial film. Fuel, 332, 126185. https://doi.org/10.1016/j.fuel.2022.126185
  12. Parra Avendaño, J. (2020) Propuesta para la separación controlada de agua y sales del petróleo crudo en la sección de desalado en una refinería, reduciendo efectos corrosivos aguas abajo [Bachelor's Thesis]. Fundación Universidad de América.
  13. Pereira, J., Velasquez, I., Blanco, R., Sanchez, M., Pernalete, C., & Canelón, C. (2015). Crude oil desalting process. Advances in petrochemicals, 1-11. http://dx.doi.org/10.5772/61274
  14. Ratkowsky, D. (1990). Handbook of nonlinear regression models. New York: Marcel Dekker.
  15. Rincón, L. E., Hernández, V., & Cardona, C. A. (2014). Analysis of technological schemes for the efficient production of added-value products from Colombian oleochemical feedstocks. Process Biochemistry, 49(3), 474-489. https://doi.org/10.1016/j.procbio.2013.11.015
  16. Shafiei, M., Kazemzadeh, Y., Martyushev, D. A., Dai, Z., & Riazi, M. (2023). Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Scientific Reports, 13(1), 4100. https://doi.org/10.1038/s41598-023-31379-0
  17. Tahouni, N., Abbasi, M., Panjeshahi, M. H., & Eddine, M. R. N. (2023). Parametric optimization of a crude oil treatment unit to maximize oil production. Chemical Engineering Research and Design, 190, 20-32. https://doi.org/10.1016/j.cherd.2022.12.009
  18. Wong, S. F., Lim, J. S., & Dol, S. S. (2015). Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. Journal of Petroleum Science and Engineering, 135, 498-504. https://doi.org/10.1016/j.petrol.2015.10.006
  19. Yacine, C., Safri, A., Djemiat, D. E., & Benmounah, A. (2023). Rheological behavior and microstructural properties of crude oil and emulsions (water/oil-oil/water). Petroleum Science and Technology, 1-17. https://doi.org/10.1080/10916466.2023.2232397
  20. Yu, D., Li, Z., Li, J., He, J., Li, B., & Wang, Y. (2024). Enhancement of H2 and light oil production and CO2 emission mitigation during co-pyrolysis of oily sludge and incineration fly ash. Journal of Hazardous Materials, 462, 132618. https://doi.org/10.1016/j.jhazmat.2023.132618
  21. Zulfiqar, I., Shehzadi, I., & Hussain, N. (2024). Principles of oil-water separation strategies. In Nanotechnology for Oil-Water Separation (pp. 49-81). Elsevier.