Vol. 22 Núm. 1 (2024): Fuentes, el reventón energético
Artículos

TRIBOLOGÍA DE LAS BROCAS DE PERFORACIÓN EN LA INDUSTRIA GEOTÉRMICA: UNA REVISIÓN BIBLIOGRÁFICA

Camilo Andrés Guerrero-Martin
Universidade Federal do Pará, Energy and Sea Research Group (Grupo de Pesquisa em Energia e Mar), Campus Universitário de Salinópolis, 68.721-000, Salinópolis-Pará, Brasil.
Laura Estefanía Garzón Rojas
Universidade Federal Do Pará, Instituto de Geociências, Programa de Pós-graduação Em Geologia e Geoquímica.
Ivan Alfredo Romero Barrera
Universidade Federal Do Pará, Instituto de Geociências, Programa de Pós-graduação Em Geologia e Geoquímica.
Laura Estefanía Guerrero-Martin
Fundación de Educación Superior San José – Usanjose. Caracas # 63-21 - Bogotá - Colombia.
Stefanny Camacho-Galindo
Fundación de Educación Superior San José – Usanjose. Caracas # 63-21 - Bogotá - Colombia.
Raúl Salinas-Silva
Fundación de Educación Superior San José – Usanjose. Caracas # 63-21 - Bogotá - Colombia.
Pedro Paulo de Freitas
Universidade Federal do Pará, Energy and Sea Research Group (Grupo de Pesquisa em Energia e Mar), Campus Universitário de Salinópolis, 68.721-000, Salinópolis-Pará, Brasil.

Publicado 2023-12-26

Cómo citar

Guerrero-Martin, C. A., Garzón Rojas, L. E., Romero Barrera, I. A., Guerrero-Martin, L. E., Camacho-Galindo, S., Salinas-Silva, R., & de Freitas, P. P. (2023). TRIBOLOGÍA DE LAS BROCAS DE PERFORACIÓN EN LA INDUSTRIA GEOTÉRMICA: UNA REVISIÓN BIBLIOGRÁFICA. Fuentes, El reventón energético, 22(1), 7–20. https://doi.org/10.18273/revfue.v22n1-2024001

Resumen

La energía del calor de la tierra es fundamental para el abastecimiento energético de países con este recurso. Esta revisión bibliográfica destaca la tribología aplicada a las brocas en la industria geotérmica. Enfrentándose a un entorno geológico diverso, las brocas son fundamentales para la obtención eficiente de energía, con desafíos significativos de fricción, desgaste y lubricación. Este trabajo aborda la complejidad de la interacción de las brocas con diversas formaciones geotérmicas, resaltando la importancia de comprender los fenómenos tribológicos. Se exploran avances en materiales y revestimientos, como compuestos, aleaciones resistentes al calor y revestimientos cerámicos, junto con estrategias innovadoras de diseño geométrico. La atención en sistemas de lubricación, enfriamiento y monitoreo continuo destaca la búsqueda de eficiencia y vida útil prolongada de las brocas. Esta revisión ofrece una visión integral de los avances en la investigación tribológica de las brocas en la industria geotérmica, identificando tendencias emergentes y desafíos críticos para el desarrollo sostenible de esta forma de energía renovable.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abdo, J., & Haneef, M. D. (2022). Nano-materials Modified Drilling Fluid for Improving Deep Drilling Conditions. Journal of Energy Resources Technology, 144(7), 073202. https://doi.org/10.1115/1.4052186
  2. Agwu, O. E., Akpabio, J. U., Alabi, S. B., & Dosunmu, A. (2018). Artificial intelligence techniques and their applications in drilling flu-id engineering: A review. Journal of Petroleum Science and Engineering, 167, 300-315. https://doi.org/10.1016/j.petrol.2018.04.019
  3. Akar, S., & Young, K. R. (2015). Assessment of new approaches in geothermal exploration decision making (No. NREL/CP-6A20-63546). National Renewable Energy Lab.(NREL), Gold-en, CO (United States).
  4. Amiri, A. (2016). Investigation of discrete element and bonded particle methods for mod-elling rock mechanics subjected to standard tests and drilling.
  5. AyalaCarcedo, F. (2017). Drilling and blast-ing of rocks. Routledge.
  6. Bailey, M. J., Thomas, A. X., Doudou, S., El Kotob, M., Al-Shukaili, A. H., & Al-Rawahi, I. S. (2020, November). Enhancing Directional Performance of PDC Drill Bits by Removing Extraneous Geometry. In Abu Dhabi Interna-tional Petroleum Exhibition and Conference (p. D012S116R196). SPE. https://doi.org/10.2118/203128-MS
  7. Boakye, G. O., Ormsdóttir, A. M., Gunnars-son, B. G., Irukuvarghula, S., Khan, R., & Karlsdóttir, S. N. (2021). The effect of polytetra-fluoroethylene (PTFE) particles on microstruc-tural and tribological properties of electroless Ni-P+ PTFE duplex coatings developed for geo-thermal applications. Coatings, 11(6), 670.
  8. Boakye, G. O., Straume, E. O., Rodriguez, B. A., Kovalov, D., & Karlsdottir, S. N. (2021, April). Microstructural characterization, corro-sion and wear properties of graphene oxide modified polymer coatings for geothermal drill-ing applications. In NACE CORROSION (p. D011S004R003). NACE.
  9. Breede, K., Dzebisashvili, K., & Falcone, G. (2015). Overcoming challenges in the classifi-cation of deep geothermal potential. Geothermal Energy Science, 3(1), 19-39.
  10. Burak, T. (2018). Application of artificial neural networks to predict the downhole incli-nation in directionally drilled geothermal wells (Master's thesis, Middle East Technical Universi-ty).
  11. Buzaianu, A., Karlsdottir, S., Ragnarsdottir, K., Haraldsdottir, H., Gudlaugsson, S., Motoiu, P., & CSAKI, I. (2017). Ni21Cr11Al2. 5Y1Co Composite coated carbon steel tested in geo-thermal conditions. Eur J Mater Sci Eng, 2(3). https://ejmse.ro/articles/EJMSE_02_02-3_04_Buzaianu.pdf
  12. Canbaz, C. H., Palabiyik, Y., Ozyurtkan, M. H., Hosgor, F. B., & Sari, M. M. (2021). Ad-vanced materials for geothermal energy applica-tions. In Sustainable Materials for Transitional and Alternative Energy (pp. 53-124). Gulf Pro-fessional Publishing. https://doi.org/10.1016/B978-0-12-824379-4.00002-1
  13. Capuano Jr, L. E. (2016). Geothermal well drilling. In Geothermal Power Generation (pp. 107-139). Woodhead Publishing.
  14. Cardoe, J., Nygaard, G., Lane, C., Saarno, T., & Bird, M. (2021, March). Oil and gas drill bit technology and drilling application engineer-ing saves 77 drilling days on the world’s deep-est engineered geothermal systems EGS wells. In SPE/IADC Drilling Conference and Exhibi-tion (p. D021S002R002). SPE. https://doi.org/10.2118/204121-MS
  15. Casini, M. (2016). Smart buildings: Ad-vanced materials and nanotechnology to im-prove energy-efficiency and environmental performance. Woodhead Publishing.
  16. Cheng, L., Yang, G., Zhang, S., Zhang, Y., Gao, C., Song, N., ... & Zhang, P. (2022). Prep-aration and action mechanism of temperature sensitive N-isopropylacrylamide/nanosilica hy-brid as rheological modifier for water-based drilling fluid. Journal of Petroleum Science and Engineering, 219, 111096. https://doi.org/10.1016/j.petrol.2022.111096
  17. Cheraghian, G. G., & Afrand, M. (2021). Nanotechnology for drilling operations. In Emerging Nanotechnologies for Renewable Energy (pp. 135-148). Elsevier.
  18. Daireaux, B., Ambrus, A., Carlsen, L. A., Mihai, R., Gjerstad, K., & Balov, M. (2021, March). Development, Testing and Validation of an Adaptive Drilling Optimization System. In SPE/IADC Drilling Conference and Exhibition (p. D051S022R003). SPE. https://doi.org/10.2118/204083-MS
  19. de Souza Alves, A. C., Modesto, C. T. S., Lima, W. K., Trejo, P. C., Silva, R. S., Galindo, S. C., ... & Guerrero, W. A. (2023). Estudio de la implantación de la energía eólica como fuen-te de suministro energético para una bomba de elevación artificial offshore. Fuentes: El reven-tón energético, 21(1), 95-104. https://doi.org/10.18273/revfue.v21n1-2023007
  20. Dougherty, P. S., Pudjoprawoto, R., & Higgs III, C. F. (2014). Bit cutter-on-rock tri-bometry: Analyzing friction and rate-of-penetration for deep well drilling substrates. Tribology International, 77, 178-185. https://doi.org/10.1016/j.triboint.2014.04.003
  21. Du, J., Zhang, H., Geng, Y., Ming, W., He, W., Ma, J., ... & Liu, K. (2019). A review on machining of carbon fiber reinforced ceramic matrix composites. Ceramics International, 45(15), 18155-18166. https://doi.org/10.1016/j.ceramint.2019.06.112
  22. Epelle, E. I., & Gerogiorgis, D. I. (2020). A review of technological advances and open challenges for oil and gas drilling systems engi-neering. AIChE Journal, 66(4), e16842. https://doi.org/10.1002/aic.16842
  23. Fan, H., Lu, C., Lai, X., Du, S., Yu, W., & Wu, M. (2023). Adaptive monitoring for geo-logical drilling process using neighborhood preserving embedding and Jensen–Shannon divergence. Control Engineering Practice, 134, 105476. https://doi.org/10.1016/j.conengprac.2023.105476
  24. Fanicchia, F., & Karlsdottir, S. N. (2023). Research and Development on Coatings and Paints for Geothermal Environments: A Review. Advanced Materials Technologies, 8(18), 2202031. https://doi.org/10.1002/admt.202202031
  25. Fattnes, L. (2020). New Nanoparticle Based Drilling Fluid Formulation and Character-ization: Experimental and Simulation Studies (Master's thesis, University of Stavanger).
  26. Feito, N., Díaz-Álvarez, J., López-Puente, J., & Miguelez, M. H. (2018). Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs. Composite Struc-tures, 184, 1147-1155. https://doi.org/10.1016/j.compstruct.2017.10.061
  27. Gabdrakhmanova, K. F., Izmaylova, G. R., & Larin, P. A. (2018, November). The way of using geothermal resources for generating elec-tric energy in wells at a late stage of operation. In IOP Conference Series: Earth and Environ-mental Science (Vol. 194, No. 8, p. 082012). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/194/8/082012
  28. Gao, C., Wu, G., & Wang, S. (2017). Drill-ing mechanism investigation on SiC ceramic using diamond bits. The Open Mechanical En-gineering Journal, 11(1). https://www.benthamopen.com/ABSTRACT/TOMEJ-11-25
  29. Gelfgat, M. Y., & Geraskin, A. S. (2021, October). Deep geothermal well construction problems and possible solutions. In SPE Rus-sian Petroleum Technology Conference. (p. D021S012R002). SPE. https://doi.org/10.2118/206616-MS
  30. Gou, R., Chen, J., Luo, X., Zhao, J., & Lei, Z. (2023). Tribological behavior of the friction film of polycrystalline diamond compact and different matching materials in drilling fluid. Journal of Alloys and Compounds, 967, 171703. https://doi.org/10.1016/j.jallcom.2023.171703
  31. Gunawan, F., Krisnanto, W., Mardiana, M. R., Noviasta, B., & Febriarto, H. B. (2018, Au-gust). Conical diamond element PDC bit as a breakthrough to drill hard geothermal formation in Indonesia. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. (p. D021S010R001). SPE. https://doi.org/10.2118/191100-MS
  32. Hackstein, F. V., & Madlener, R. (2021). Sustainable operation of geothermal power plants: why economics matters. Geothermal Energy, 9, 1-30. https://doi.org/10.1186/s40517-021-00183-2
  33. Harris, B. E., Lightstone, M. F., & Reitsma, S. (2021). A numerical investigation into the use of directionally drilled wells for the extraction of geothermal energy from abandoned oil and gas wells. Geothermics, 90, 101994. https://doi.org/10.1016/j.geothermics.2020.101994
  34. Hassan, M., Sadek, A., Attia, M. H., & Thomson, V. (2018). Intelligent machining: real-time tool condition monitoring and intelligent adaptive control systems. Journal of Machine Engineering, 18(1), 5-17. https://doi.org/10.5604/01.3001.0010.8811
  35. Hill, J. E. (2022). Drilling for geothermal anywhere: A decision-making tool for deep geo-thermal drilling (Doctoral dissertation).
  36. Hossain, M. E., & Islam, M. R. (2018). Drilling Engineering Problems and Solutions: A Field Guide for Engineers and Students. John Wiley & Sons.
  37. Hussain, A., Emadi, H., & Botchway, K. (2021). How nanoparticles have ameliorated the challenges in drilling operations. Journal of Petroleum Science and Engineering, 197, 107931. https://doi.org/10.1016/j.petrol.2020.107931
  38. Hutchinson, M., Thornton, B., Theys, P., & Bolt, H. (2018, September). Optimizing drilling by simulation and automation with big data. In SPE Annual Technical Conference and Exhibi-tion. (p. D032S065R001). SPE. https://doi.org/10.2118/191427-MS
  39. Ikram, R., Jan, B. M., & Vejpravova, J. (2021). Towards recent tendencies in drilling fluids: Application of carbon-based nanomateri-als. Journal of Materials Research and Tech-nology, 15, 3733-3758. https://doi.org/10.1016/j.jmrt.2021.09.114
  40. Imaizumi, H., Ohno, T., Karasawa, H., Miyazaki, K., Akhmadi, E., Yano, M., ... & Hishi, Y. (2019). Drilling performance of PDC bits for geothermal well development in field experiments. In Proceedings. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2019/Imaizumi.pdf
  41. Ivanov, I. I., & Voronov, S. A. (2018). Pro-cessing parameters influence on dynamics of vibratory drilling with adaptive control. In MATEC web of conferences (Vol. 226, p. 02001). EDP Sciences. https://doi.org/10.1051/matecconf/201822602001
  42. Ivanov, I., Pleshcheev, I., & Larkin, A. (2018). Vibratory drilling with digital adaptive control. In MATEC Web of Conferences (Vol. 224, p. 01047). EDP Sciences. https://doi.org/10.1051/matecconf/201822401047
  43. Jamali, S., Wittig, V., Börner, J., Bracke, R., & Ostendorf, A. (2019). Application of high powered Laser Technology to alter hard rock properties towards lower strength materials for more efficient drilling, mining, and Geothermal Energy production. Geomechanics for Energy and the Environment, 20, 100112. https://doi.org/10.1016/j.gete.2019.01.001
  44. Jiménez, K., Carreño, W., Guerrero, A. C., & Ayala, E. (2022). Efecto fluido dinámico de una nueva configuración de boquillas de una broca PDC sobre el diferencial de presión. Fuentes: El reventón energético, 20(1), 7-20. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/13409
  45. Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., ... & Zemedkun, M. T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2(5), 324-339. https://ui.adsabs.harvard.edu/abs/2021NRvEE...2..324J/abstract
  46. Kabeyi, M. J. B. (2019). Geothermal elec-tricity generation, challenges, opportunities and recommendations. International Journal of Ad-vances in Scientific Research and Engineering (ijasre), 5(8), 53-95. https://doi.org/10.31695/IJASRE.2019.33408
  47. Kamel, M. A., Elkatatny, S., Mysorewala, M. F., Al-Majed, A., & Elshafei, M. (2018). Adaptive and real-time optimal control of stick–slip and bit wear in autonomous rotary steerable drilling. Journal of Energy Resources Technolo-gy, 140(3), 032908. https://doi.org/10.1115/1.4038131
  48. Katiyar, P. K. (2020). A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: A mechanistic approach. International Journal of Refractory Metals and Hard Materials, 92, 105315. https://doi.org/10.1016/j.ijrmhm.2020.105315
  49. Khalilidermani, M., & Knez, D. (2022). A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling. Ener-gies, 15(9), 3162. https://doi.org/10.3390/en15093162
  50. Knez, D., & Khalilidermani, M. (2021). A review of different aspects of off-earth drilling. Energies, 14(21), 7351. https://doi.org/10.3390/en14217351
  51. Krama, A., Gharib, M., Refaat, S. S., & Palazzolo, A. (2021). Design and hardware in-the-loop validation of an effective super-twisting controller for stick-slip suppression in drill-string systems. Journal of Dynamic Sys-tems, Measurement, and Control, 143(11), 111008. https://doi.org/10.1115/1.4051853
  52. Kruszewski, M., & Wittig, V. (2018). Re-view of failure modes in supercritical geother-mal drilling projects. Geothermal Energy, 6(1), 28. https://doi.org/10.1186/s40517-018-0113-4
  53. Kumar, J., Verma, R. K., & Debnath, K. (2020). A new approach to control the delami-nation and thrust force during drilling of poly-mer nanocomposites reinforced by graphene oxide/carbon fiber. Composite Structures, 253, 112786. https://doi.org/10.1016/j.compstruct.2020.112786
  54. Lan, P., & Polycarpou, A. A. (2018). High temperature and high pressure tribological ex-periments of advanced polymeric coatings in the presence of drilling mud for oil & gas appli-cations. Tribology International, 120, 218-225. https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/173092/LAN-DISSERTATION-2017.pdf?sequence=1
  55. Lan, P., Iaccino, L. L., Bao, X., & Polycar-pou, A. A. (2020). The effect of lubricant addi-tives on the tribological performance of oil and gas drilling applications up to 200° C. Tribology International, 141, 105896. https://doi.org/10.1016/j.triboint.2019.105896
  56. Lebbihiat, N., Atia, A., Arıcı, M., & Mene-ceur, N. (2021). Geothermal energy use in Alge-ria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Produc-tion, 302, 126950. https://doi.org/10.1016/j.jclepro.2021.126950
  57. Li, C., Duan, L., Tan, S., Zhang, W., & Pan, B. (2018). Effect of CaF2 and hBN on the me-chanical and tribological properties of Fe-based impregnated diamond bit matrix. International Journal of Refractory Metals and Hard Materi-als, 75, 118-125. https://doi.org/10.1016/j.ijrmhm.2018.04.011
  58. Li, Y., Wang, M., Tan, X., An, Y., Liu, H., Gao, K., & Guo, M. (2021). Application of hy-brid silicate as a film-forming agent in high-temperature water-based drilling fluids. ACS omega, 6(31), 20577-20589. https://doi.org/10.1021/acsomega.1c02725
  59. Liu, F., Sun, J., Zhang, Z., Geng, Y., Zhou, X., Yue, W., & An, Y. (2023). Deep eutectic solvent modified graphene as a lubricant for water-based drilling fluid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 12604-12618. https://doi.org/10.1080/15567036.2023.2274960
  60. Liu, J., Zheng, H., Kuang, Y., Xie, H., & Qin, C. (2019). 3D numerical simulation of rock cutting of an innovative non-planar face PDC cutter and experimental verification. Applied Sciences, 9(20), 4372. https://doi.org/10.3390/app9204372
  61. Liu, N., Zhang, D., Gao, H., Hu, Y., & Duan, L. (2021). Real-time measurement of drilling fluid rheological properties: A review. Sensors, 21(11), 3592. https://doi.org/10.3390/s21113592
  62. Loginov, P. A., Sidorenko, D. A., Bychko-va, M. Y., Zaitsev, A. A., & Levashov, E. A. (2019). Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. The International Journal of Advanced Manufactur-ing Technology, 102, 2041-2047. https://link.springer.com/article/10.1007/s00170-018-03262-0
  63. Lu, P., Powrie, H. E., Wood, R. J., Harvey, T. J., & Harris, N. R. (2021). Early wear detec-tion and its significance for condition monitor-ing. Tribology International, 159, 106946. https://eprints.soton.ac.uk/447322/
  64. Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 world-wide review. Geothermics, 90, 101915.
  65. Luo, X., Gou, R., Li, K., Kang, C., Chen, J., & Kang, G. (2022). High-temperature an-nealing of polycrystalline diamond compact with cobalt removal and evolution of tribologi-cal properties of grinding balls. Diamond and Related Materials, 126, 109073. https://doi.org/10.1016/j.diamond.2022.109073
  66. Ma, T., Chen, P., & Zhao, J. (2016). Over-view on vertical and directional drilling tech-nologies for the exploration and exploitation of deep petroleum resources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2, 365-395. https://link.springer.com/article/10.1007/s40948-016-0038-y
  67. Majeed, Y., Abu Bakar, M. Z., & Butt, I. A. (2020). Abrasivity evaluation for wear predic-tion of button drill bits using geotechnical rock properties. Bulletin of Engineering Geology and the Environment, 79, 767-787. https://api.semanticscholar.org/CorpusID:199511818
  68. Marbun, B. T. H., Ridwan, R. H., Nugraha, H. S., Sinaga, S. Z., & Purbantanu, B. A. (2021). Review of directional drilling design and operation of geothermal wells in Indonesia. Renewable Energy, 176, 135-152. https://doi.org/10.1016/j.renene.2021.05.078
  69. Maslov, A. L., Markova, I. Y., Zakharova, E. S., Polushin, N. I., & Laptev, A. I. (2017, May). Tribological tests of wear-resistant coat-ings used in the production of drill bits of hori-zontal and inclined drilling. In Journal of Phys-ics: Conference Series (Vol. 857, No. 1, p. 012029). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/857/1/012029
  70. Meier, T. (2017). Assessment of a contact-less drilling tool and its development to access deep underground resources (Doctoral disserta-tion, ETH Zurich).
  71. Melentiev, R., Yu, N., & Lubineau, G. (2021). Polymer metallization via cold spray additive manufacturing: A review of process control, coating qualities, and prospective ap-plications. Additive manufacturing, 48, 102459.
  72. Mohamed, A., Salehi, S., & Ahmed, R. (2021). Significance and complications of drill-ing fluid rheology in geothermal drilling: A re-view. Geothermics, 93, 102066. https://doi.org/10.1016/j.geothermics.2021.102066
  73. Mosleh, M., Ghaderi, M., Shirvani, K. A., Belk, J., & Grzina, D. J. (2017). Performance of cutting nanofluids in tribological testing and conventional drilling. Journal of Manufacturing Processes, 25, 70-76. https://doi.org/10.1016/j.jmapro.2016.11.001
  74. Mosleh, M., Shirvani, K. A., Smith, S. T., Belk, J. H., & Lipczynski, G. (2019). A study of minimum quantity lubrication (MQL) by nanofluids in orbital drilling and tribological testing. Journal of Manufacturing and Materials Processing, 3(1), 5. https://doi.org/10.3390/jmmp3010005
  75. Nagaraj, A., Uysal, A., Gururaja, S., & Ja-wahir, I. S. (2022). Analysis of surface integrity in drilling carbon fiber reinforced polymer composite material under various cool-ing/lubricating conditions. Journal of Manufac-turing Processes, 82, 124-137. https://api.semanticscholar.org/CorpusID:251354858
  76. Nakashima, Y., Umehara, N., Kousaka, H., Tokoroyama, T., Murashima, M., & Mori, D. (2023). Carbon-based coatings for suppression of silica adhesion in geothermal power genera-tion. Tribology International, 177, 107956. https://doi.org/10.1016/j.triboint.2022.107956
  77. Ndeda, R., Sebusang, S. E. M., Marumo, R., & Ogur, E. O. (2022, March). Review of thermal surface drilling technologies. In Pro-ceedings of the Sustainable Research and Inno-vation Conference (pp. 61-69). https://sri.jkuat.ac.ke/jkuatsri/index.php/sri/article/view/188
  78. Negrão, A. B. G. R., Corrêa, S. R. F., Lima, W. K., Trejo, P. C., Salinas-Silva, R., Camacho-Galindo, S., ... & Guerrero-Martin, C. A. (2023). VIABILIDADE DE IMPLEMENTAÇÃO DA ENERGIA MAREMOTRIZ EM PLATAFOR-MAS PETROLÍFERAS OFFSHORE NA BACIA DO FOZ DO AMAZONAS. Fuentes, el reventón energético, 21(2), 7-15. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/14561/13127
  79. Pai, R., Chattopadhyay, G., & Karmakar, G. (2023). Maintenance and asset management practices of industrial assets: importance of tribological practices and digital tools. Interna-tional Journal of Process Management and Benchmarking, 13(2), 233-256. https://ideas.repec.org/a/ids/ijpmbe/v13y2023i2p233-256.html
  80. Pastusek, P. E., Barajas, P. E., Payette, G., & Sowers, S. (2023, October). PDC Bit Selec-tion Guidelines Based on Physics and Lessons Learned. In SPE Annual Technical Conference and Exhibition. (p. D021S025R004). SPE. https://doi.org/10.2118/215007-MS
  81. Pastusek, P., Payette, G., Shor, R., Cayeux, E., Aarsnes, U. J., Hedengren, J., ... & Liu, Y. (2019, March). Creating open source models, test cases, and data for oilfield drilling challeng-es. In SPE/IADC Drilling Conference and Exhi-bition (p. D031S016R001). SPE. https://experts.umn.edu/en/publications/creating-open-source-models-test-cases-and-data-for-oilfield-dril
  82. Perçin, M. U. S. T. A. F. A., Aslantas, K., Ucun, I., Kaynak, Y. U. S. U. F., & Cicek, A. D. E. M. (2016). Micro-drilling of Ti–6Al–4V al-loy: The effects of cooling/lubricating. Precision engineering, 45, 450-462. https://doi.org/10.1016/j.precisioneng.2016.02.015
  83. Philip, J. T., Kumar, D., Mathew, J., & Ku-riachen, B. (2020). Tribological investigations of wear resistant layers developed through EDA and WEDA techniques on Ti6Al4V surfaces: Part I–Ambient temperature. Wear, 458, 203409. https://doi.org/10.1016/j.wear.2020.203409
  84. Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., & Baghbanan, A. (2020). Investiga-tion of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. International Journal of Refractory Metals and Hard Materi-als, 87, 105113. https://doi.org/10.1016/j.ijrmhm.2019.105113
  85. Purba, D. P., Adityatama, D. W., Umam, M. F., & Muhammad, F. (2019). Key considera-tions in developing strategy for geothermal ex-ploration drilling project in Indone-sia. Proceedings, 44th Work. Geotherm. Reserv. Eng. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2019/Purba.pdf
  86. Purba, D., Adityatama, D. W., Fadhillah, F. R., Al-Asyari, M. R., Ivana, J., Abi, R., & Anu-grah, R. P. (2022). A Discussion on Oil & Gas and Geothermal Drilling Environment Differ-ences and Their Impacts to Well Control Meth-ods. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2022/Purba.pdf
  87. Purba, D., Chandra, V. R., Fadhillah, F. R., Wulan, R. D., Soedarsa, A., Adityatama, D. W., & Umam, M. F. (2020). Drilling Infrastructure Construction Challenges in Geothermal Explo-ration Project in Eastern Indonesia. In Proceedings World Geothermal Congress 2020 (Vol. 1). https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/11118.pdf?t=1609907180
  88. Rahman, M. H., Shahriar, S., & Menezes, P. L. (2023). Recent Progress of Machine Learn-ing Algorithms for the Oil and Lubricant Indus-try. Lubricants, 11(7), 289. https://doi.org/10.3390/lubricants11070289
  89. Raina, N., Sharma, P., Slathia, P. S., Bha-gat, D., & Pathak, A. K. (2020). Efficiency en-hancement of renewable energy systems using nanotechnology. Nanomaterials and Environ-mental Biotechnology, 271-297. https://ouci.dntb.gov.ua/en/works/42n2BnK4/
  90. Rao, Y. S., Mohan, N. S., Shetty, N., & Shivamurthy, B. (2019). Drilling and structural property study of multi-layered fiber and fabric reinforced polymer composite-a review. Materi-als and Manufacturing Processes, 34(14), 1549-1579.
  91. https://doi.org/10.1080/10426914.2019.1686522
  92. Rashidi, M., Sedaghat, A., Misbah, B., Sa-bati, M., & Vaidyan, K. (2021). Experimental study on energy saving and friction reduction of Al2O3-WBM nanofluids in a high-speed Taylor-Couette flow system. Tribology International, 154, 106728.
  93. Rashidi, M., Sedaghat, A., Misbah, B., Sa-bati, M., & Vaidyan, K. (2021). Use of SiO2 nanoparticles in water-based drilling fluids for improved energy consumption and rheology: a laboratory study. SPE Journal, 26(06), 3529-3543. https://www.x-mol.com/paper/1471634905581002752?recommendPaper=1384729592305049600
  94. Ratov, B., Rucki, M., Fedorov, B., Hevork-ian, E., Siemiatkowski, Z., Muratova, S., ... & Bondarenko, N. (2023). Calculations on En-hancement of Polycrystalline Diamond Bits through Addition of Superhard Diamond-Reinforced Elements. Machines, 11(4), 453. https://doi.org/10.3390/machines11040453
  95. Reddy, R. H. N., Alphonse, M., Raja, V. B., Palanikumar, K., Sanjay, D. S. K., & Sudhan, K. M. (2021). Evaluating the wear studies and tool characteristics of coated and uncoated HSS drill bit–A review. Materials Today: Proceedings, 46, 3779-3785.
  96. Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F., & Sanjuan, B. (2017). Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities. Geothermal Energy, 5(1), 1-25. https://doi.org/10.1186/s40517-017-0075-y
  97. Ren, H., Jia, X., Yang, Y., Huang, K., & Song, D. (2023). Personalized design and field experiment of polycrystalline diamond compact bits for high-temperature geothermal wells. Ge-oenergy Science and Engineering, 223, 211512. https://doi.org/10.1016/j.geoen.2023.211512
  98. Ropyak, L. Y., Pryhorovska, T. O., & Levchuk, K. H. (2020). Analysis of materials and modern technologies for PDC drill bit man-ufacturing. Progress in Physics of Metals, 21(2), 274-301. https://ufm.imp.kiev.ua/article/v21/i02/Usp.Fiz.Met.21.274.pdf
  99. Rossi, E. (2020). Combined Thermo-Mechanical Drilling Technology to Enhance Access to Deep Geo-Resources (Doctoral dis-sertation, ETH Zurich).
  100. Rouf, S., Raina, A., Ul Haq, M. I., & Naveed, N. (2022). Sensors and tribological systems: applications for industry 4.0. Industrial Robot: the international journal of robotics re-search and application, 49(3), 442-460. https://sure.sunderland.ac.uk/id/eprint/14243/1/Sen-sors%20and%20Tribological%20Systems_Applications%20for%20Industry%204.0.pdf
  101. Roy, T., Naceur, K. B., Harrison, C., Shel-ton, J., Harrison, H., Hall, A., ... & Roy, I. (2023, October). An Industry-First, Unflasked Perforating Gun for Enhanced Geothermal, Ul-tra HPHT, and SAGD, Rated to 750° F, 15-Kpsi. In Abu Dhabi International Petroleum Exhibi-tion and Conference (p. D041S124R004). SPE.
  102. Sadeghi, B., Cavaliere, P., Shabani, A., Pruncu, C. I., & Lamberti, L. (2023). Nano-scale wear: A critical review on its measuring methods and parameters affecting nano-tribology. Proceedings of the Institution of Me-chanical Engineers, Part J: Journal of Engineer-ing Tribology, 13506501231207525. https://doi.org/10.1177/13506501231207525
  103. Saffari, H. R. M., Soltani, R., Alaei, M., & Soleymani, M. (2018). Tribological properties of water-based drilling fluids with borate nano-particles as lubricant additives. Journal of Pe-troleum Science and Engineering, 171, 253-259. https://doi.org/10.1016/j.petrol.2018.07.049
  104. Shaikh, N., Patel, K., Pandian, S., Shah, M., & Sircar, A. (2019). Self-propagating high-temperature synthesized ceramic materials for oil and gas wells: application and the challeng-es. Arabian Journal of Geosciences, 12, 1-11. https://link.springer.com/journal/12517/volumes-and-issues/12-17
  105. Shankar, V. K., Kunar, B. M., Murthy, C. S., & Ramesh, M. R. (2020). Measurement of bit-rock interface temperature and wear rate of the tungsten carbide drill bit during rotary drill-ing. Friction, 8, 1073-1082. https://link.springer.com/article/10.1007/s40544-019-0330-2
  106. Sharma, A., Babbar, A., Tian, Y., Pathri, B. P., Gupta, M., & Singh, R. (2022). Machining of ceramic materials: a state-of-the-art review. In-ternational Journal on Interactive Design and Manufacturing (IJIDeM), 1-21. https://www.x-mol.com/paper/1563979853487902720?adv
  107. Shirangi, M. G., Ettehadi, R., Aragall, R., Furlong, E., May, R., Dahl, T., ... & Thompson, C. (2020, February). Digital twins for drilling fluids: advances and opportunities. In IADC/SPE International Drilling Conference and Exhibition. OnePetro. https://doi.org/10.2118/199681-MS
  108. Silva, W. K., Cunha, A. L., Alves, A. C., Gomes, V. J. C., Freitas, P. P., Restrepo, D. F., ... & Guerrero-Martin, C. A. (2023, October). Technical Evaluation of the Use of Hybrid En-ergy (Solar and Offshore Wind) to Supply Arti-ficial Lift Pumps on an Oil Platform on the Equatorial Margin. In Offshore Technology Con-ference Brasil (p. D011S011R003). OTC. https://doi.org/10.4043/32671-MS
  109. Su, J. C., Mazumdar, A., Buerger, S., Foris, A., Kaspereit, D., & Faircloth, B. (2021). Evaluation of Microhole Drilling Technology for Geothermal Exploration, Assessment, And Monitoring (No. SAND2021-13956). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). https://www.osti.gov/biblio/1832088
  110. Su, J., Raymond, D., Prasad, S., & Wolfer, D. (2017). Advanced Percussive Drilling Tech-nology for Geothermal Exploration and Devel-opment (No. SAND-2017-4612). Golden Field Office, Golden, CO (United States).
  111. Sugiura, J., Lopez, R., Borjas, F., Jones, S., McLennan, J., Winkler, D., ... & Self, J. (2021, September). Oil and gas drilling optimi-zation technologies applied successfully to un-conventional geothermal well drilling. In SPE Annual Technical Conference and Exhibition (p. D031S055R006). SPE. https://doi.org/10.2118/205965-MS
  112. Taleghani, A. D., & Ahmadi, M. (2020). Thermoporoelastic analysis of artificially frac-tured geothermal reservoirs: A multiphysics problem. Journal of Energy Resources Technol-ogy, 142(8), 081302. https://doi.org/10.1115/1.4045925
  113. Taugbøl, K., Sola, B., Forshaw, M., & Fjogstad, A. (2021, March). Automatic Drilling Fluids Monitoring. In SPE/IADC Drilling Con-ference and Exhibition (p. D051S029R001). SPE. https://doi.org/10.2118/204041-MS
  114. Teseleanu, G. (2006). RESEARCH, INO-VATION AND TECHNOLOGY TRANSFER IN MINERAL INDUSTRY. Scientific Bulletin Se-ries C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology, 20, 355. https://nordtech.ubm.ro/
  115. Tong, C., & Tong, C. (2019). Advanced Materials Enable Renewable Geothermal Ener-gy Capture and Generation. Introduction to Ma-terials for Advanced Energy Systems, 321-377. https://link.springer.com/book/10.1007/978-3-319-98002-7
  116. Unuofin, J. O., Iwarere, S. A., & Dara-mola, M. O. (2023). Embracing the future of circular bio-enabled economy: unveiling the prospects of microbial fuel cells in achieving true sustainable energy. Environmental Science and Pollution Research, 30(39), 90547-90573. https://link.springer.com/article/10.1007/s11356-023-28717-0
  117. Vivas, C., Salehi, S., Tuttle, J. D., & Rick-ard, B. (2020). Challenges and opportunities of geothermal drilling for renewable energy gener-ation. GRC Transactions, 44, 904-918. https://publications.mygeoenergynow.org/grc/1034261.pdf
  118. Wayo, D. D. K., Irawan, S., Satyanaga, A., & Abbas, G. (2023). Modelling and Simulating Eulerian Venturi Effect of SBM to Increase the Rate of Penetration with Roller Cone Drilling Bit. Energies, 16(10), 4185. https://doi.org/10.3390/en16104185
  119. Wu, X., Wan, F., Chen, Z., Han, L., & Li, Z. (2020). Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: Practices and prospects. Natural Gas Industry B, 7(5), 547-556. https://doi.org/10.1016/j.ngib.2020.09.012
  120. Xin, L., Zhongwei, H., Huaizhong, S., Xiaoguang, W., Han, C., Rui, L., & Huiyong, Y. (2023, June). Rock Breaking Mechanism and Trajectory Stabilization of Horizontal Well Sec-tion with Flexible Drilling Tool. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2023). ARMA. https://doi.org/10.56952/ARMA-2023-0012
  121. Xu, J., Ji, M., Davim, J. P., Chen, M., El Mansori, M., & Krishnaraj, V. (2020). Compara-tive study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Composite Structures, 234, 111727. https://doi.org/10.1016/j.compstruct.2019.111727
  122. Yang, J., Kane, A., Didriksen, T., Thors-haug, K., Stenerud, G., Vågenes, B., ... & Sellami, H. (2022, June). Novel environmental-ly friendly nano-additives for drilling fluids. In ARMA US Rock Mechanics/Geomechanics Sym-posium (pp. ARMA-2022). ARMA. https://doi.org/10.56952/ARMA-2022-0719
  123. Yasukawa, K. (2021). Geothermal energy use and its related technology development in Japan. Journal of Energy Resources Technolo-gy, 143(10), 100802. https://doi.org/10.1115/1.4050384
  124. Yi, P., Yue, W., Liang, J., Hou, B., Sun, J., Gu, Y., & Liu, J. (2018). Effects of nanocrystal-lized layer on the tribological properties of mi-cro-arc oxidation coatings on 2618 aluminum alloy under high temperatures. The Internation-al Journal of Advanced Manufacturing Tech-nology, 96, 1635-1646. https://link.springer.com/article/10.1007/s00170-017-0831-y