Vol. 21 Núm. 2 (2023): Fuentes, el reventón energético
Artículos

EVALUACIÓN DE UNA UNIDAD HPHT ACOPLADA CON SONDA NIR PARA DETERMINAR EL INICIO DE LA PRECIPITACIÓN DE ASFALTENOS BAJO DIFERENTES PRESIONES

Daniel Rezende da Silva
Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/LMCP, Rua Moniz Aragão, 360, bloco 8G/CT2, 21941-594, Rio de Janeiro, RJ, Brazil.
João Pedro Dias Capuchinho
Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/LMCP, Rua Moniz Aragão, 360, bloco 8G/CT2, 21941-594, Rio de Janeiro, RJ, Brazil.
Edilson Domingos da Silva
Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/LMCP, Rua Moniz Aragão, 360, bloco 8G/CT2, 21941-594, Rio de Janeiro, RJ, Brazil.
Daniela Hartmann
Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE/ LADPOL, Av. Horácio Macedo, 2030, bloco F, 21941-598, Rio de Janeiro, RJ, Brazil.
Marcia Cristina Khalil de Oliveira
Centro de Pesquisas da Petrobras, Av. Horácio Macedo, 950, 21941-915, Rio de Janeiro, RJ, Brazil.
Elizabete Fernandes Lucas
Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE/ LADPOL, Av. Horácio Macedo, 2030, bloco F, 21941-598, Rio de Janeiro, RJ, Brazil.

Publicado 2023-09-26

Cómo citar

da Silva, D. R., Dias Capuchinho, J. P., da Silva, E. D., Hartmann, D., Khalil de Oliveira, M. C., & Fernandes Lucas, E. (2023). EVALUACIÓN DE UNA UNIDAD HPHT ACOPLADA CON SONDA NIR PARA DETERMINAR EL INICIO DE LA PRECIPITACIÓN DE ASFALTENOS BAJO DIFERENTES PRESIONES. Fuentes, El reventón energético, 21(2), 45–60. https://doi.org/10.18273/revfue.v21n2-2023004

Resumen

Los asfaltenos se caracterizan por ser la fracción de petróleo crudo con mayor masa molar y polaridad, preestableciendo principalmente grupos (poli)aromáticos. La floculación y deposición de asfaltenos provoca grandes pérdidas a la industria petrolera. Es importante comprender el comportamiento de fase de los asfaltenos en condiciones más cercanas a las que se encuentran en los yacimientos. Por lo tanto, la LMCP/UFRJ comenzó a operar una unidad de alta presión y alta temperatura (HPHT) acoplada a una sonda de espectrómetro de infrarrojo cercano que puede utilizar diferentes floculantes. Este trabajo describe el desarrollo de un procedimiento, así como la validación de los resultados obtenidos de esta unidad. Debido a la compleja composición del crudo, se prepararon sistemas modelo (MS) con asfaltenos extraídos con n-pentano (C5I) y n-heptano (C7I). Los experimentos se realizaron a presión atmosférica, titulados con n-heptano, ya 100 y 300 bar titulados con propano.
Como era de esperar, los asfaltenos C7I fueron más inestables, presentando un inicio de precipitación más bajo que los asfaltenos C5I en condiciones ambientales y a presiones más altas. Sin embargo, para ambos MS, la estabilidad aumentó con el aumento de la presión al usar propano como solvente. El método propuesto para evaluar el inicio de la precipitación de asfaltenos fue efectivo para MS en tolueno y crudo muerto, y es una alternativa prometedora para la investigación de diferentes tipos de crudo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., Kabir. S., Jamaluddin. A., Marshall. A., Rodgers. R., Mullins, O.C., & Solbakken. T. (2007) Asphaltenes -Problematic but Rich in Potential. Oilfield Review, 19, 22-43. https://www.slb.com/-/media/files/oilfield-review/p22-43-english
  2. Akmaz, S., Iscan, O., Gurkaynak, M. A., & Yasar, M. (2011). The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batiraman Crude Oil. Petroleum Science and Technology, 29 (2), 160–171. https://doi.org/10.1080/10916460903330361
  3. Ali, M. F., Bukhari, A., & Misbah-ul-Hasan. (1989). Structural Characterization of Arabian Heavy Crude Oil Residue. Fuel Science and Technology International, 7 (8), 1179–1208. https://doi.org/10.1080/08843758908962284
  4. Altoé, R., De Oliveira, M. C. K., Lopes, H. E., Teixeira, C., Cirilo, L. C. M., Lucas, E. F., & Gonzalez, G. (2014). Solution behavior of asphaltic residues and deasphalted oil prepared by extraction of heavy oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 59–66. https://doi.org/10.1016/j.colsurfa.2013.12.082
  5. American National Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. West Conshohocken, 2000. ASTM D 6560 – 12/IP-143
  6. American National Standard Test Method for Instrumental Determination of Carbon, Hydrogen and Nitrogen in Petroleum Products and Lubricants, ASTM D5291, 2010
  7. American National Standard Test Method for Pour Point of Petroleum Products, ASTM D-97, 2012
  8. Aske, N., Kallevik, H., & Sjöblom, J. (2001). Determination of Saturate, Aromatic, Resin, and Asphaltenic (SARA) Components in Crude Oils by Means of Infrared and Near-Infrared Spectroscopy. Energy Fuels, 15(5), 1304–1312. https://doi.org/10.1021/ef010088h
  9. Barreira, F. R., Reis, L. G., Nunes, R. de C. P., Filipakis, S. D., & Lucas, E. F. (2018). Asphaltenes Precipitation Onset: Influence of the Addition of a Second Crude Oil or Its Asphaltenes Fractions (C3I and C5I). Energy Fuels, 32 (10), 10391–10397. https://doi.org/10.1021/acs.energyfuels.8b01749
  10. Boduszynski, M. M. (1987). Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C). Energy Fuels, 1 (1), 2–11. https://doi.org/10.1021/ef00001a001
  11. Creek, J. L., Wang, J., & Buckley, J. S. (2008). Asphaltene Instability Induced by Light Hydrocarbons. All Days - Offshore Technology Conference. https://doi.org/10.4043/19690-MS
  12. Cruz, A. A., Amaral, M., Santos, D., Palma, A., Franceschi, E., Borges, G. R., Coutinho, J. A. P., Palácio, J., & Dariva, C. (2019). CO2 influence on asphaltene precipitation. The Journal of Supercritical Fluids, 143, 24–31. https://doi.org/10.1016/j.supflu.2018.08.005
  13. Demirbaş, A. (2002). Asphaltene yields from five types of fuels via different methods. Energy Conversion and Management, 43(8), 1091–1097. https://doi.org/10.1016/S0196-8904(01)00085-1
  14. Fakher, S., Ahdaya, M., Elturki, M., & Imqam, A. (2020). An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection. Journal of Petroleum Exploration and Production Technology, 10 (3), 919–931.
  15. https://link.springer.com/article/10.1007/s13202-019-00782-7
  16. Fakher, S., Ahdaya, M., Elturki, M., & Imqam, A. (2020). Critical review of asphaltene properties and factors impacting its stability in crude oil. Journal of Petroleum Exploration and Production Technology, 10(3), 1183–1200. https://doi.org/10.1007/s13202-019-00811-5
  17. Garreto, M. S. E., Gonzalez, G., Ramos, A. C., Lucas, E. F. (2010). Looking for a Model Solvent to Disperse Asphaltenes. Chemistry & Chemical Technology, 4 (4), 317–323. https://doi.org/10.23939/chcht04.04.317
  18. Garreto, M. S. E., Mansur, C. R. E., & Lucas, E. F. (2013). A model system to assess the phase behavior of asphaltenes in crude oil. Fuel, 113, 318–322. https://doi.org/10.1016/j.fuel.2013.05.097
  19. Golshahi, N., Afra, S., Samouei, H., Nasr-El-Din, H., & Beraldo da Silveira Balestrin, L. (2019). Asphaltene Structural Changes Induced by Carbon Dioxide Injection. Offshore Technology Conference Brasil. https://doi.org/10.4043/29730-MS
  20. Groenzin, H., & Mullins, O. C. (2000). Molecular Size and Structure of Asphaltenes from Various Sources. Energy Fuels, 14 (3), 677–684. https://doi.org/10.1021/ef990225z
  21. Guerrero-Martin, C. A., Montes-Pinzon, D., Meneses Motta da Silva, M., Montes-Paez, E., Guerrero-Martin, L. E., Salinas-Silva, R., Camacho-Galindo, S., Lucas, E. F., & Szklo, A. (2023). Asphaltene Precipitation/Deposition Estimation and Inhibition through Nanotechnology: A Comprehensive Review. Energies, 16 (13), 4859. https://doi.org/10.3390/en16134859
  22. Guerrero-Martin, C. A., Montes-Páez, E., Khalil de Oliveira, M. C., Campos, J., & Lucas, E. F. (2018). Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production. SPE Trinidad and Tobago Section Energy Resources Conference. https://doi.org/10.2118/191275-MS
  23. Habibi, A., Yassin, M. R., Dehghanpour, H., & Bryan, D. (2017). Experimental investigation of CO2-oil interactions in tight rocks: A Montney case study. Fuel, 203, 853–867. https://doi.org/10.1016/j.fuel.2017.04.077
  24. Hartmann, D., Lopes, H. E., Teixeira, C. L. S., de Oliveira, M. C. K., Gonzalez, G., Lucas, E. F., & Spinelli, L. S. (2016). Alkanes Induced Asphaltene Precipitation Studies at High Pressure and Temperature in the Presence of Argon. Energy Fuels, 30 (5), 3693–3706. https://doi.org/10.1021/acs.energyfuels.5b02217
  25. Hirschberg, A., deJong, L. N. J., Schipper, B. A., & Meijer, J. G. (1984). Influence of Temperature and Pressure on Asphaltene Flocculation. Society of Petroleum Engineers Journal, 24 (03), 283–293. https://doi.org/10.2118/11202-PA
  26. Honse, S. O., Ferreira, S. R., Mansur, C. R. E., Lucas, E. F., & González, G. (2012). Separation and characterization of asphaltenic subfractions. Química Nova, 35 (10), 1991–1994. https://www.scielo.br/j/qn/a/jwQb4RPBnDGNbM59FvLMLQx/?lang=en
  27. Institute of Petroleum of London. IP 143/01 (2001) standard methods for analysis and testing of petroleum and related products, London.
  28. ISO 12185 (1996) Crude petroleum and petroleum products -- Determination of density -- Oscillating U-tube method. Geneva: International Organization for Standardization.
  29. James, L. A., Rezaei, N., & Chatzis, I. (2008). VAPEX, Warm VAPEX and Hybrid VAPEX - The State of Enhanced Oil Recovery for In Situ Heavy Oils in Canada. Journal of Canadian Petroleum Technology, 47 (04). https://doi.org/10.2118/08-04-12-TB
  30. Li, L., Sheng, J. J., & Xu, J. (2017). Gas Selection for Huff-n-Puff EOR in Shale Oil Reservoirs Based upon Experimental and Numerical Study. SPE Unconventional Resources Conference Calgary, Alberta, Canada. https://doi.org/10.2118/185066-MS
  31. Liu, T., Wei, H., Wang, X., Sun, D., & Ma, Z. (2015). Measurement of Asphaltene Precipitation Onset. Recent Patents on Mechanical Engineering, 8 (1), 3–15. https://www.eurekaselect.com/article/63569
  32. Lordeiro, F., Altoé, R., Hartmann, D., Filipe, E., González, G., & Lucas, E. (2021). The Stabilization of Asphaltenes in Different Crude Fractions: A Molecular Approach. Journal of the Brazilian Chemical Society, 32 (4), 741-756. https://doi.org/10.21577/0103-5053.20200226
  33. Lucas, E. F., Spinelli, L. S., & Khalil, C. N. (2015). Polymers Applications in Petroleum Production. Encyclopedia of Polymer Science and Technology, 1-50. https://doi.org/10.1002/0471440264.pst641
  34. Mansur, C. R. E., De Melo, A. R., & Lucas, E. F. (2012). Determination of Asphaltene Particle Size: Influence of Flocculant, Additive, and Temperature. Energy Fuels, 26(8), 4988–4994. https://doi.org/10.1021/ef300365x
  35. Maravilha, T. S. L., Middea, A., Spinelli, L. S., & Lucas, E. F. (2021). Reduction of asphaltenes adsorbed on kaolinite by polymers based on cardanol. Brazilian Journal of Chemical Engineering, 38(1), 155–163. https://doi.org/10.1007/s43153-020-00082-2
  36. Marín-Velásquez, T. D. (2021). Pronóstico de estabilidad de asfaltenos en petróleo crudo con base en análisis SARA mediante redes neuronales artificiales. Fuentes, el reventón energético, 19(2), 19-33. https://doi.org/10.18273/revfue.v19n2-2021003
  37. Mohammadi, M., Akbari, M., Bahramian, A., Naeeni, M. S., & Fakhroueian, Z. (2013). Inhibition effect of CO2 on asphaltene precipitation for an Iranian crude oil and comparison with N2 and CH4. Korean Journal of Chemical Engineering, 30(2), 429–433. https://doi.org/10.1007/s11814-012-0144-7
  38. Nunes, R., Valle, M., Reis, W., Aversa, T., Filipakis, S., & Lucas, E. (2019). Model Molecules for Evaluating Asphaltene Precipitation Onset of Crude Oils. Journal of the Brazilian Chemical Society, 30 (6), 1241-1251. https://doi.org/10.21577/0103-5053.20190019
  39. Oh, K., Ring, T. A., & Deo, M. D. (2004). Asphaltene aggregation in organic solvents. Journal of Colloid and Interface Science, 271 (1), 212–219. https://doi.org/10.1016/j.jcis.2003.09.054
  40. Peralta-Martínez, M. V., Vázquez-Ramírez, R., Blass-Amador, G., & Palacios-Lozano, E. M. (2008). Determination of Functional Groups in Mexican Vacuum Residua. Petroleum Science and Technology, 26(1), 91–100. https://doi.org/10.1080/10916460600705816
  41. Peralta Sanchez, A. F., Blanco Sanchez, J. D., Reina Gonzalez, J. F., & Mantilla Ramirez, L. E. (2017). Transporte de crudo pesado por oleoducto usando el método de dilución: Un enfoque práctico para modelar la caída de presión y la precipitación de asfaltenos. Fuentes, el reventón energético, 15 (2), 7-17. https://doi.org/10.18273/revfue.v15n2-2017001
  42. Rogel, E., Roye, M., Vien, J., & Miao, T. (2015). Characterization of Asphaltene Fractions: Distribution, Chemical Characteristics, and Solubility Behavior. Energy Fuels, 29 (4), 2143- 2152. https://doi.org/10.1021/ef5026455
  43. Romero, J. F., da Costa, M. F. L., Sampaio, J. P. G., Chacón Valero, A. M., Feitosa, F. X., & de Sant’Ana, H. B. (2021). Experimental phase behavior and solubility parameter for crude oil + methane [T = 311.15–373.15 K] and crude oil + methane + CO2 mixtures [T = 343.15–383.15 K]. Fuel, 288, 119675. https://doi.org/10.1016/j.fuel.2020.119675
  44. Romero, J. F., Feitosa, F. X., Fleming, F. P., & de Sant’Ana, H. B. (2019). Experimental study of the phase behavior of methane and crude oil mixtures. Fuel, 255, 115850. https://doi.org/10.1016/j.fuel.2019.115850
  45. Santos, D., Filho, E. B. M., Dourado, R. S., Amaral, M., Filipakis, S., Oliveira, L. M. S. L., Guimarães, R. C. L., Santos, A. F., Borges, G. R., Franceschi, E., & Dariva, C. (2017). Study of Asphaltene Precipitation in Crude Oils at Desalter Conditions by Near-Infrared Spectroscopy. Energy Fuels, 31 (5), 5031-5036. https://doi.org/10.1021/acs.energyfuels.7b00602
  46. Silva, D. R., Hartmann, D., Oliveira, M. C. K., & Lucas, E. F. (2022). Avaliação da precipitação de frações polares de petróleo induzida por propano, sob diferentes condições de pressão. IBP - Rio Oil and Gas Expo and Conference, 1-13. https://doi.org/10.48072/2525-7579.rog.2022.448
  47. Speight, J. G. (2006). The Chemistry and Technology of Petroleum. (4th ed.). CRC Press -Taylor & Francis Group. https://doi.org/10.1201/9781420008388
  48. Ting, P. D., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2007). Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. In: Mullins, O. C., Sheu, E. Y., Hammami, A., & Marshall, A. G. (eds), Asphaltenes, Heavy Oils, and Petroleomics. New York: Springer, 301-327. https://doi.org/10.1007/0-387-68903-6_12
  49. Wang, J., & Buckley, J. S. (2003). Asphaltene Stability in Crude Oil and Aromatic Solvents -The Influence of Oil Composition. Energy Fuels, 17 (6), 1445–1451. https://doi.org/10.1021/ef030030y