EVALUATION OF AN HPHT UNIT COUPLED WITH NIR PROBE TO DETERMINE ASPHALTENES PRECIPITATION ONSET UNDER DIFFERENT PRESSURES
Published 2023-09-26
How to Cite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Asphaltenes are characterized as the crude oil fraction with the highest molar mass and polarity, presetting mainly (poly) aromatic groups. The flocculation and deposition of asphaltenes causes large losses to the oil industry. Understanding the phase behavior of asphaltenes under conditions closer to those found in reservoirs is important. Therefore, LMCP/UFRJ started operating a high-pressure high-temperature (HPHT) unit coupled to a near-infrared spectrometer probe that can use different flocculants. This work describes the development of a procedure as well as the validation of the results obtained from this unit. Due to the complex composition of crude oil, model systems (MS) were prepared with asphaltenes extracted with n-pentane (C5I) and n-heptane (C7I). The experiments were carried out at atmospheric pressure, titrated with n-heptane, and at 100 and 300 bar titrated with propane. As expected, C7I asphaltenes were more unstable, presenting lower precipitation onset than C5I asphaltenes under ambient conditions and higher pressures. However, for both MS, the stability increased with rising pressure when using propane as a solvent. The proposed method to evaluate asphaltenes precipitation onset was effective for MS in toluene and dead crude oil, and is a promising alternative for investigation of different types of crude oil.
Downloads
References
- Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., Kabir. S., Jamaluddin. A., Marshall. A., Rodgers. R., Mullins, O.C., & Solbakken. T. (2007) Asphaltenes -Problematic but Rich in Potential. Oilfield Review, 19, 22-43. https://www.slb.com/-/media/files/oilfield-review/p22-43-english
- Akmaz, S., Iscan, O., Gurkaynak, M. A., & Yasar, M. (2011). The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batiraman Crude Oil. Petroleum Science and Technology, 29 (2), 160–171. https://doi.org/10.1080/10916460903330361
- Ali, M. F., Bukhari, A., & Misbah-ul-Hasan. (1989). Structural Characterization of Arabian Heavy Crude Oil Residue. Fuel Science and Technology International, 7 (8), 1179–1208. https://doi.org/10.1080/08843758908962284
- Altoé, R., De Oliveira, M. C. K., Lopes, H. E., Teixeira, C., Cirilo, L. C. M., Lucas, E. F., & Gonzalez, G. (2014). Solution behavior of asphaltic residues and deasphalted oil prepared by extraction of heavy oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 59–66. https://doi.org/10.1016/j.colsurfa.2013.12.082
- American National Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. West Conshohocken, 2000. ASTM D 6560 – 12/IP-143
- American National Standard Test Method for Instrumental Determination of Carbon, Hydrogen and Nitrogen in Petroleum Products and Lubricants, ASTM D5291, 2010
- American National Standard Test Method for Pour Point of Petroleum Products, ASTM D-97, 2012
- Aske, N., Kallevik, H., & Sjöblom, J. (2001). Determination of Saturate, Aromatic, Resin, and Asphaltenic (SARA) Components in Crude Oils by Means of Infrared and Near-Infrared Spectroscopy. Energy Fuels, 15(5), 1304–1312. https://doi.org/10.1021/ef010088h
- Barreira, F. R., Reis, L. G., Nunes, R. de C. P., Filipakis, S. D., & Lucas, E. F. (2018). Asphaltenes Precipitation Onset: Influence of the Addition of a Second Crude Oil or Its Asphaltenes Fractions (C3I and C5I). Energy Fuels, 32 (10), 10391–10397. https://doi.org/10.1021/acs.energyfuels.8b01749
- Boduszynski, M. M. (1987). Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C). Energy Fuels, 1 (1), 2–11. https://doi.org/10.1021/ef00001a001
- Creek, J. L., Wang, J., & Buckley, J. S. (2008). Asphaltene Instability Induced by Light Hydrocarbons. All Days - Offshore Technology Conference. https://doi.org/10.4043/19690-MS
- Cruz, A. A., Amaral, M., Santos, D., Palma, A., Franceschi, E., Borges, G. R., Coutinho, J. A. P., Palácio, J., & Dariva, C. (2019). CO2 influence on asphaltene precipitation. The Journal of Supercritical Fluids, 143, 24–31. https://doi.org/10.1016/j.supflu.2018.08.005
- Demirbaş, A. (2002). Asphaltene yields from five types of fuels via different methods. Energy Conversion and Management, 43(8), 1091–1097. https://doi.org/10.1016/S0196-8904(01)00085-1
- Fakher, S., Ahdaya, M., Elturki, M., & Imqam, A. (2020). An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection. Journal of Petroleum Exploration and Production Technology, 10 (3), 919–931.
- https://link.springer.com/article/10.1007/s13202-019-00782-7
- Fakher, S., Ahdaya, M., Elturki, M., & Imqam, A. (2020). Critical review of asphaltene properties and factors impacting its stability in crude oil. Journal of Petroleum Exploration and Production Technology, 10(3), 1183–1200. https://doi.org/10.1007/s13202-019-00811-5
- Garreto, M. S. E., Gonzalez, G., Ramos, A. C., Lucas, E. F. (2010). Looking for a Model Solvent to Disperse Asphaltenes. Chemistry & Chemical Technology, 4 (4), 317–323. https://doi.org/10.23939/chcht04.04.317
- Garreto, M. S. E., Mansur, C. R. E., & Lucas, E. F. (2013). A model system to assess the phase behavior of asphaltenes in crude oil. Fuel, 113, 318–322. https://doi.org/10.1016/j.fuel.2013.05.097
- Golshahi, N., Afra, S., Samouei, H., Nasr-El-Din, H., & Beraldo da Silveira Balestrin, L. (2019). Asphaltene Structural Changes Induced by Carbon Dioxide Injection. Offshore Technology Conference Brasil. https://doi.org/10.4043/29730-MS
- Groenzin, H., & Mullins, O. C. (2000). Molecular Size and Structure of Asphaltenes from Various Sources. Energy Fuels, 14 (3), 677–684. https://doi.org/10.1021/ef990225z
- Guerrero-Martin, C. A., Montes-Pinzon, D., Meneses Motta da Silva, M., Montes-Paez, E., Guerrero-Martin, L. E., Salinas-Silva, R., Camacho-Galindo, S., Lucas, E. F., & Szklo, A. (2023). Asphaltene Precipitation/Deposition Estimation and Inhibition through Nanotechnology: A Comprehensive Review. Energies, 16 (13), 4859. https://doi.org/10.3390/en16134859
- Guerrero-Martin, C. A., Montes-Páez, E., Khalil de Oliveira, M. C., Campos, J., & Lucas, E. F. (2018). Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production. SPE Trinidad and Tobago Section Energy Resources Conference. https://doi.org/10.2118/191275-MS
- Habibi, A., Yassin, M. R., Dehghanpour, H., & Bryan, D. (2017). Experimental investigation of CO2-oil interactions in tight rocks: A Montney case study. Fuel, 203, 853–867. https://doi.org/10.1016/j.fuel.2017.04.077
- Hartmann, D., Lopes, H. E., Teixeira, C. L. S., de Oliveira, M. C. K., Gonzalez, G., Lucas, E. F., & Spinelli, L. S. (2016). Alkanes Induced Asphaltene Precipitation Studies at High Pressure and Temperature in the Presence of Argon. Energy Fuels, 30 (5), 3693–3706. https://doi.org/10.1021/acs.energyfuels.5b02217
- Hirschberg, A., deJong, L. N. J., Schipper, B. A., & Meijer, J. G. (1984). Influence of Temperature and Pressure on Asphaltene Flocculation. Society of Petroleum Engineers Journal, 24 (03), 283–293. https://doi.org/10.2118/11202-PA
- Honse, S. O., Ferreira, S. R., Mansur, C. R. E., Lucas, E. F., & González, G. (2012). Separation and characterization of asphaltenic subfractions. Química Nova, 35 (10), 1991–1994. https://www.scielo.br/j/qn/a/jwQb4RPBnDGNbM59FvLMLQx/?lang=en
- Institute of Petroleum of London. IP 143/01 (2001) standard methods for analysis and testing of petroleum and related products, London.
- ISO 12185 (1996) Crude petroleum and petroleum products -- Determination of density -- Oscillating U-tube method. Geneva: International Organization for Standardization.
- James, L. A., Rezaei, N., & Chatzis, I. (2008). VAPEX, Warm VAPEX and Hybrid VAPEX - The State of Enhanced Oil Recovery for In Situ Heavy Oils in Canada. Journal of Canadian Petroleum Technology, 47 (04). https://doi.org/10.2118/08-04-12-TB
- Li, L., Sheng, J. J., & Xu, J. (2017). Gas Selection for Huff-n-Puff EOR in Shale Oil Reservoirs Based upon Experimental and Numerical Study. SPE Unconventional Resources Conference Calgary, Alberta, Canada. https://doi.org/10.2118/185066-MS
- Liu, T., Wei, H., Wang, X., Sun, D., & Ma, Z. (2015). Measurement of Asphaltene Precipitation Onset. Recent Patents on Mechanical Engineering, 8 (1), 3–15. https://www.eurekaselect.com/article/63569
- Lordeiro, F., Altoé, R., Hartmann, D., Filipe, E., González, G., & Lucas, E. (2021). The Stabilization of Asphaltenes in Different Crude Fractions: A Molecular Approach. Journal of the Brazilian Chemical Society, 32 (4), 741-756. https://doi.org/10.21577/0103-5053.20200226
- Lucas, E. F., Spinelli, L. S., & Khalil, C. N. (2015). Polymers Applications in Petroleum Production. Encyclopedia of Polymer Science and Technology, 1-50. https://doi.org/10.1002/0471440264.pst641
- Mansur, C. R. E., De Melo, A. R., & Lucas, E. F. (2012). Determination of Asphaltene Particle Size: Influence of Flocculant, Additive, and Temperature. Energy Fuels, 26(8), 4988–4994. https://doi.org/10.1021/ef300365x
- Maravilha, T. S. L., Middea, A., Spinelli, L. S., & Lucas, E. F. (2021). Reduction of asphaltenes adsorbed on kaolinite by polymers based on cardanol. Brazilian Journal of Chemical Engineering, 38(1), 155–163. https://doi.org/10.1007/s43153-020-00082-2
- Marín-Velásquez, T. D. (2021). Pronóstico de estabilidad de asfaltenos en petróleo crudo con base en análisis SARA mediante redes neuronales artificiales. Fuentes, el reventón energético, 19(2), 19-33. https://doi.org/10.18273/revfue.v19n2-2021003
- Mohammadi, M., Akbari, M., Bahramian, A., Naeeni, M. S., & Fakhroueian, Z. (2013). Inhibition effect of CO2 on asphaltene precipitation for an Iranian crude oil and comparison with N2 and CH4. Korean Journal of Chemical Engineering, 30(2), 429–433. https://doi.org/10.1007/s11814-012-0144-7
- Nunes, R., Valle, M., Reis, W., Aversa, T., Filipakis, S., & Lucas, E. (2019). Model Molecules for Evaluating Asphaltene Precipitation Onset of Crude Oils. Journal of the Brazilian Chemical Society, 30 (6), 1241-1251. https://doi.org/10.21577/0103-5053.20190019
- Oh, K., Ring, T. A., & Deo, M. D. (2004). Asphaltene aggregation in organic solvents. Journal of Colloid and Interface Science, 271 (1), 212–219. https://doi.org/10.1016/j.jcis.2003.09.054
- Peralta-Martínez, M. V., Vázquez-Ramírez, R., Blass-Amador, G., & Palacios-Lozano, E. M. (2008). Determination of Functional Groups in Mexican Vacuum Residua. Petroleum Science and Technology, 26(1), 91–100. https://doi.org/10.1080/10916460600705816
- Peralta Sanchez, A. F., Blanco Sanchez, J. D., Reina Gonzalez, J. F., & Mantilla Ramirez, L. E. (2017). Transporte de crudo pesado por oleoducto usando el método de dilución: Un enfoque práctico para modelar la caída de presión y la precipitación de asfaltenos. Fuentes, el reventón energético, 15 (2), 7-17. https://doi.org/10.18273/revfue.v15n2-2017001
- Rogel, E., Roye, M., Vien, J., & Miao, T. (2015). Characterization of Asphaltene Fractions: Distribution, Chemical Characteristics, and Solubility Behavior. Energy Fuels, 29 (4), 2143- 2152. https://doi.org/10.1021/ef5026455
- Romero, J. F., da Costa, M. F. L., Sampaio, J. P. G., Chacón Valero, A. M., Feitosa, F. X., & de Sant’Ana, H. B. (2021). Experimental phase behavior and solubility parameter for crude oil + methane [T = 311.15–373.15 K] and crude oil + methane + CO2 mixtures [T = 343.15–383.15 K]. Fuel, 288, 119675. https://doi.org/10.1016/j.fuel.2020.119675
- Romero, J. F., Feitosa, F. X., Fleming, F. P., & de Sant’Ana, H. B. (2019). Experimental study of the phase behavior of methane and crude oil mixtures. Fuel, 255, 115850. https://doi.org/10.1016/j.fuel.2019.115850
- Santos, D., Filho, E. B. M., Dourado, R. S., Amaral, M., Filipakis, S., Oliveira, L. M. S. L., Guimarães, R. C. L., Santos, A. F., Borges, G. R., Franceschi, E., & Dariva, C. (2017). Study of Asphaltene Precipitation in Crude Oils at Desalter Conditions by Near-Infrared Spectroscopy. Energy Fuels, 31 (5), 5031-5036. https://doi.org/10.1021/acs.energyfuels.7b00602
- Silva, D. R., Hartmann, D., Oliveira, M. C. K., & Lucas, E. F. (2022). Avaliação da precipitação de frações polares de petróleo induzida por propano, sob diferentes condições de pressão. IBP - Rio Oil and Gas Expo and Conference, 1-13. https://doi.org/10.48072/2525-7579.rog.2022.448
- Speight, J. G. (2006). The Chemistry and Technology of Petroleum. (4th ed.). CRC Press -Taylor & Francis Group. https://doi.org/10.1201/9781420008388
- Ting, P. D., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2007). Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. In: Mullins, O. C., Sheu, E. Y., Hammami, A., & Marshall, A. G. (eds), Asphaltenes, Heavy Oils, and Petroleomics. New York: Springer, 301-327. https://doi.org/10.1007/0-387-68903-6_12
- Wang, J., & Buckley, J. S. (2003). Asphaltene Stability in Crude Oil and Aromatic Solvents -The Influence of Oil Composition. Energy Fuels, 17 (6), 1445–1451. https://doi.org/10.1021/ef030030y