Análisis de la fragilidad para identificar sweet spots en formaciones de shale gas

  • Leonardo Fernandez Grupo de investigación de estabilidad de Pozo, GieP. universidad industrial de santander, Bucaramanga, Colombia
  • Yair Quintero instituto Colombiano del Petróleo, iCP, Piedecuesta, Colombia.
  • Zuly Himelda Calderón Carrillo Grupo de investigación de estabilidad de Pozo, GieP. universidad industrial de santander, Bucaramanga, Colombia.

Resumen

El objetivo de este trabajo es analizar el impacto del índice de fragilidad en el fracturamiento hidráulico de formaciones de shale gas a nivel mundial y defi nir parámetros para identifi car zonas de interés o sweet spots fracturables en shale plays prospectos.

Se realizó una revisión bibliográfi ca de las propiedades petrofísicas y mecánicas que exhiben diversas formaciones de shale gas en países como estados unidos, China, Holanda, noruega, Dinamarca y suecia. una vez estructurada la base de datos, se calcularon índices de fragilidad utilizando diferentes métodos teniendo en cuenta la composición mineralógica y los módulos elásticos estáticos y dinámicos de cada formación de shale estudiada.

El cálculo de índices de fragilidad en profundidad y su relación con el contenido orgánico total permitió identifi car posibles sweet spots para las formaciones de shale gas de mayor prospección. Adicionalmente, el análisis de la relación entre el índice de fragilidad y el comportamiento mecánico de dichas formaciones permitió determinar que fl uido de fractura es el apropiado para utilizar en caso de realizar un fracturamiento hidráulico en la zona de interés.

Palabras clave: Shale gas, Fracturamiento hidráulico, Indice de fragilidad, Módulos elásticos, Mineralogía, Sweet spot

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, A., Ulm, F. Geomechanics field and laboratory characterization of Woodford shale: the next gas play. SPE 110120. 2007.

2. Administration, U.S Energy Information. Technically Recoverable Shale Oil and Shale Gas Resources. Washington : s.n. USA 2013.

3. Bignonnet, F. Caracterisation experimentale et modelisation micro-mecanique de la permeabilite et la resistance de roches agileuses. Thèse de doctorat, Universitè Paris-Est. France. 2014.

4. Bouw, S., Lutgert, J. Shale plays in the Netherlands. SPE 152644. 2012.

5. Caineng, Z., Dazhong, D., Shejiao, W., Jianzhong, L., Xinjing, L., Yuman, W., Denghua, L., Keming, C. Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development Journal. Vol. 37, pp 641 – 654 2010.

6. Call, T. Geomechanical properties of Marcellus shale core samples within a sequence stratigraphic framework. Master thesis, Pennsylvania State University. USA. 2012.

7. Chen, D. Microstructure study on Barnett shale. Master Thesis, University of Houston. USA. 2012.

8. Chenji, W., Guan, Q., Wei, G., Bicheng, Y., Killough, J., Hongyan, W., Honglin, L. Characterization and analysis on petrophysical parameters of a marine shale Gas Reservoir. SPE 165380. 2013.

9. Cronin, M.B. Core-scale heterogeneity and dualpermeability pore structure in the Barnett Shale. Master thesis, University of Texas at Austin. USA. 2014.

10. Dooley, J. Macroscopic physics online text. Millersville University. 2010. http://www. millersville.edu/~jdooley/macro/derive/elas1/ poissn/poissn.htm

11. Feng, Y., Kai, W., Blanton, E., Winston, Z. Case study: a challenging large-scale fracturing in Sichuan basin. IPTC 18104. 2014.

12. Feng, Y., Zhengfu, N., Qing, W., Huiqing, L., Shidong, Z., Hongmei, L. Integrated study of reservoir characteristics of a shale gas reservoir: a case study from Sichuan basin of China. SPE 165870. 2013.

13. Glorioso, J., Rattia, A. Unconventional reservoirs: basic petrophysical concepts for shale gas. SPE 153004. 2012.

14. Gray, D., Anderson, P., Logel, J., Delbecq, F., Schmid, R. Estimation of stress and Geomechanical properties using 3D seismic data. EAGE, first break. Vol. 30. March 2012.

15. Howard, D., Angus, J. Acoustics and Psychoacoustics, ISBN 0240519957. Third edition. 2006.

16.Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M. unconventional Shale-gas Systems: the Mississippian Barnett shale of North Central Texas, as one model for thermogenic shale-gas assessment. AAPG Bulletin. Vol. 9, pp 475-499.2007

17.Jiang, T. Connection of elastic and transport properties: effective medium study in anisotropic porous media. Doctorate thesis , University of Houston. USA. 2013.

18. Kinley, T.J. Geology and hydrocarbon potential of the Barnett shale (Mississippian) in the northern Delaware basin, west Texas and southeastern New Mexico. Master thesis, Texas Christian University. USA. 2006.

19. Lau, H., Yu, M. Production technology challenges of tight and shale gas production in China. IPTC 17096. 2013.

20. Li, Q., Chen, M., Jin, Y., Zhou, Y., Wang, F., Zhang, R. Rock mechanical properties of shale gas reservoir and shale gas reservoir and their influences on hydraulic fracture. IPTC 16580. 2013.

21. Li, Y., Ghassemi, A. Creep behavior of Barnett, Haynesville, and Marcellus shale. ARMA12-330. 2012.

22. Mullen, J. Petrophysical characterization of the Eagle Ford shale in south Texas. SPE 138145. 2010.

23. Muniz, E., Fontoura, S. Cu triaxial tests on North Sea shale. ARMA/USRMS 05-814. 2005.

24.Noordoven, Q.A.L.V. Characterization of production potential in Jurassic and Carboniferous shale plays of the Netherlands. Master thesis, Delft University of technology, Holland. 2011.

25. Pollard, D.D. and P. Segall, Theoretical displacements and stresses near fractures in rock; with applications to faults, joints, veins, dikes, and solution surfaces. Fracture mechanics of rock, ed. B.K. Atkinson. London, United Kingdom (GBR): Acad. Press, London. England. 1987.

26. Pool, W., Geluk, M., Abels, J., Tiley, G., Idiz, E., Leenaarts, E. Assessment of an unusual European shale gas play: the Cambro-Ordovician Alum shale, southern Sweden. Paper SPE 152339. 2012.

27. Qionghui, L., Chen, M., Jin, Y., Wang, F. Experimental research on failure modes and mechanical behaviors of gas-bearing shale. Chinese Journal of Rock Mechanics and Engineering, Vol 31, pp 3764-3770.2012.

28. Rabe, C. & Cherrez, J. Laboratory characterization of Norwegian North Sea shale. ISRM 2008-052. 2008.

29. Ravestein, T. Fraccability determination of a Posidonia Shale Formation analogue through geomechanical experiments and micro-CT fracture propagation analysis. Master thesis, Delft University of Technology, Holland. 2014.

30. Rexer, T. Nanopore characterisation and gas sorption potential of European gas shales. Doctorate thesis, Newcastle University, England. 2014.

31. Rickman, R., Mullen, M., Petre, E., Grieser, B., Kundert, D. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale. SPE 115258. 2008.

32. Rickman, R., Mullen, M., Petre, E., Grieser, B., Kundert, D. Petrophysics key in stimulating shales. The American Oil & Gas Reporter. March, 2009.

33. Shukla, P., Kumar, V., Curtis, M., Sondergeld, C. H., Rai, C. S. Nanoindentation studies on shales. University of Oklahoma. ARMA 2013-578. USA. 2013.

34. Sone, H, Zoback, M. Mechanical properties of shale-gas reservoir rocks – part 1: static and dynamic elastic properties and anisotropy. Geophysics Journal. Vol. 78, pp D381 – D392. 2013.

35. Sone, H. Mechanical properties of shale gas reservoir rocks and its relation to the in-situ stress variation observed in shale gas reservoirs. Doctorate thesis, Stanford University. USA. 2012.

36. Tan, J. Shale gas potential of the major marine shale formations in the upper Yangtze platform, south China. Doctorate thesis, Technische Universität Berlin. Germany. 2014.

37. Tepper, B., Baechle, G., Keller, J., Walsh, R., Quint, E. Petrophysical evaluation of shale oil & gas opportunities in emerging shale plays; some examples and learnings from the Americas. IPTC 16926. 2013.

38. Yuan, F., Wang, K., Balnton, E., Zeng, W. Case study: A challenging large-Scale fracturing in Sichuan basin. IPTC 18104. 2014.

39. Zonggang, Lv., Wang, L., Stufen, D., Chong, K., Wooley, J., Qiang, W., Peng, J. China’s marine Qiongzhusi shale play: first deep Asia pacific region horizontal multiple stage frac: case history, operation & execution. IPTC 16391. 2013.
Publicado
2015-12-03