Experimental Design for Evaluation of Formation Damage by Microbial Contamination in Water Flooding Processes. A Colombian Study Case
Published 2019-10-28
Keywords
- Microbial contamination,
- Microorganisms,
- Secondary Recovery,
- Stimulation,
- Formation Damage
- Sulfate-reducing bacteria,
- Water production,
- Waterflooding ...More
How to Cite
Abstract
Microbial contamination is well known in the oil and gas industry and it occurs in most processes where water processing systems are involved. Microorganisms are spread everywhere, even in the subsurface, where operations of oil exploration and production are developed. For this reason, different genera of microorganisms can affect the Oil & Gas Industry. One of the major problems in oil mature fields undergoing secondary recovery is the contamination with sulfate reducing bacteria (SRB), caused generally by the injection water system (fresh and/or production) and/or of the reservoir (natural or by drilling fluids, completion, stimulation, etc.). This problem causes formation damage and microbiological induced corrosion (MIC) in the injection-production system. In many producing wells, formation damage by microbiological contamination is initially masked
by a decline in reservoir pressure; however, initial production of H2S does provide a possible microbial contamination of water production, water injection and eventually petroleum reservoir. In some producing wells, H2S concentrations have exceeded the lethal limits of 250 ppm and there are cases of producing wells with levels above 1000 ppm. In this work, both a conceptual
study and an experimental protocol were developed for the evaluation of formation damage by microbial contamination in water flooding processes, focused on finding the best stimulation treatment with biocides to H2S and corrosion control in Producer Wells of Oil Fields Undergoing Secondary Recovery as part of the comprehensive strategy to implement in the injection-reservoirproduction system of the Chichimene field in Colombia. This study included the following stages:
1. State of the art to define main Bactericides, matrix stimulation treatments to H2S and corrosion control, removal of biomass (biofilm) and iron sulfide, etc. in producers wells.
2. Conceptual study of the Formation damage by growth of sulfate-reducing bacteria.
3. Experimental protocol to evaluation of formation damage by microbial contamination in water flooding processes
4. Experimental evaluation of formation damage by microbial contamination in cores of the Chichimene field, in Colombia.
Finally, the main findings, conclusions and recommendations obtained in this study are shown.
Downloads
References
Berlanga, M and Guerrero, R. 2016. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact, 15, 165.
Cepeda, S. N. R., & Ballesteros, D. Y. P. (2008). Evaluación de la velocidad de corrosión de un acero aisi-sae 1020 en un sistema multifásico nacl 3%-aceite mineral-co2-h2s por medio de un simulador de flujo. Fuentes: El reventón energético, 6(2), 2.
Cruz, H. D. O., Duque, J. P. V., & Marulanda, J. F. F. (2015). Propuesta metodológica para el control y monitoreo de un proceso de inyección de agua. Revista Fuentes, 13(2).
Díaz, R. J., Navarro, S. F. M., & Tavera, C. P. S. (2007). Modelo estadístico para la realización de analogías orientadas a procesos de recobro mejorado. Revista Fuentes, 5(1).
E., Summer, S. Duggleby, C. Janes and M. Liu. 2014. Microbial populations in the O&G: Application of the knowledge. Paper no. 4376. Proc. CORROSION 2014 (San Antonio, TX: NACE International 2014).
Evaluation of biocides used form control of SRB present in oilfield water plant. Orletta R. Leon, Universidad de Zulia Venezuela.
Evaluation of biocide used in the oil industry before the Phenomenon of Corrosion Induced by Sulfate Reducing Bacteria. Y. Gil Figueroa, G. Lopez Gomez, Y. Bruzual, C. Rodriguez, D. Guevara, N. Bravo, J. L. Prin. Department of Materials Science. Corrosion Laboratory. Institute for Research in Biomedicine and
Applied Sciences. Dr. Susan Tai. (IIBCA), Universidad de Oriente. Venezuela. School of Engineering and Applied Sciences. Department of Mechanical. Universidad de Oriente. Venezuela.
Galvis, F. W. L., Suarez, C. E. N., & Navarro, S. F. M. (2013). Simulación de un proceso de inyección
de agua en un modelo físico escalado 3d. Revista Fuentes, 11(2).
Ghalambor, A., Hayatdavoudi, A., & Shahidi-Asl, M. (1996). A Study of Formation Damage of Selective Mineralogy Due to Bacterial Plugging. SPE Advanced Technology Series, 4(01), 118-127.
Golding, C. G., Lamboo, L. L., Beniac, D. R., & Booth, T. F. (2016). The scanning electron microscope in microbiology and diagnosis of infectious disease. Scientific reports, 6, 26516.
Impact of Desulfovibrio alaskensis biofilms on corrosion behavior of carbon steel in marine environment. A.J. Wikiel, I. Datsenko, M. Vera and W. Sand. 2014. Bioelectrochemistry, 97, 52-60.
León, O., Cárdenas, C., Araujo, I., & Carruyo, J. (2003). Evaluation of biocides used for control of SRB presents in a oilfield water plant. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 26(1).
Lomans, B.P.; de Paula, R.; Geissler, B.;
Kuijvenhoven, C.A.T.; Tsesmetzis, N., 2016.
Proposal of Improved Biomonitoring Standard for Purpose of Microbiologically Influenced Corrosion Risk Assessment. SPE International Oilfield Corrosion Conference and Exhibition, 9-10 May, Aberdeen, Scotland, UK. SPE-179919-MS.
M.G. Jaimes, A. Villar, M.A. Escobar, Ecopetrol S.A; and N.P. Acevedo, Natfrac Corporation SPE 169449. Conceptual Study and Experimental Protocol for The Selection and Evaluation of Matrix Stimulation Treatments with Biocides, focused on H2S and Corrosion Control in Producer Wells of Fields Undergoing Secondary Recovery.
Martin, C. A. G., & Páez, E. M. (2017). Efeito da salinidade na tensão interfacial do sistema óleo/agua em condições isobáricas e incremento gradual da temperatura. Revista Fuentes, 15(2), 117-124.
Maya, G. A., Herrera, J. J., Orrego, J. A., Rojas, F. A., Rueda, M. F., & Manrique, E. J. (2018). Effect of ionic composition in water: oil interactions in adjusted brine chemistry waterflooding: preliminary results. Revista Fuentes, 16(2).
Meneses, A. F. O., Moreno, L. F. C., & Plata, J. A. R. (2017). Metodología experimental para la estimación de permeabilidades relativas en dos y tres fases por medio de ajuste histórico. Revista Fuentes, 15(1), 75-85.
Oilfield Review. Microbes Oilfield Enemies or Allies. Summer 2012.
Portwood, J. T., & Romero, J. L. (2018). Waterflood Conformance Improvement–Practical Considerations & Lessons Learned. Revista Fuentes, 16(2).
Prokaryotes: the unseen majority. W.B. Whitman, D.C. Coleman and W.J. Wiebe. 1998. Proc Natl Acad Sci USA, 95(12), 6578-6583.
Ramos, L., & Marin, A. (2018). Evaluación y experiencias en el control de conificación en pozos con alto corte de agua en yacimientos con empuje hidráulico. Revista Fuentes, 16(2).
TM0194-2014, 2014. Field monitoring of bacterial growth in oil and gas systems. NACE International, item no. 21224.
Torrado, J. R., Calixto, D. G., Sarmiento, A. C., & Panqueva, J. A. (2008). Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems. Revista Argentina de
microbiologia, 40(1), 52-62.
Velandia, J. L. P. (2013). Simulación numérica del flujo bifásico agua-petróleo en un medio poroso. Fuentes: El reventón energético, 11(2), 10.
Williams, T. M., & McGinley, H. R. (2010, January). Deactivation of industrial water treatment biocides. In CORROSION 2010. NACE International.