Vol. 20 Núm. 1 (2022): Revista Fuentes, el reventón energético
Artículos

Análisis DOFA para la evaluación del potencial de energía eólica en Colombia

Juliana Martínez-Hernández
Fundación Universidad de América.
Nicolas Parra-Reyes
Environmental Engineering, Universidad Distrital Francisco José de Caldas
Laura E. Guerrero-Martin
Environmental Engineering, Universidad Distrital Francisco José de Caldas
Leidy Stefanny Camacho-Galindo
Fundación de Educación Superior San José
Raúl Salinas Silva
Fundación de Educación Superior San José
William Alberto Guerrero
Fundación de Educación Superior San José
Camilo Andrés Guerrero-Martin
Laboratório de Ensino de Engenharia de Poço e Reservatórios, Faculty of Petroleum Engineering, Federal University of Pará, Salinópolis

Publicado 2022-06-30

Palabras clave

  • Energía eólica,
  • análisis DOFA,
  • Europa,
  • Colombia,
  • Simulación técnica y financiera

Cómo citar

Martínez-Hernández , J. ., Parra-Reyes, N. ., Guerrero-Martin, L. E. ., Camacho-Galindo , L. S. ., Salinas Silva, R. ., Guerrero, W. A. ., & Guerrero-Martin , C. A. . (2022). Análisis DOFA para la evaluación del potencial de energía eólica en Colombia . Fuentes, El reventón energético, 20(1), 45–56. https://doi.org/10.18273/revfue.v20n1-2022005

Resumen

La demanda y oferta energética en Colombia ha venido en aumento, aunque teniendo en cuenta que las producciones de energías renovables en el territorio no tienen porcentajes altos, se puede observar un mercado económicamente viable para la inversión y obtención de capital, es por esto que, en Colombia en zonas específicas, como lo son las áridas, se pueden implementar el desarrollo de plantas y parques eólicas a corto plazo, con apoyos económicos y sociales de parte del gobierno. Sin embargo, las capacidades que tiene Colombia se deben ver comparadas con las experiencias que tienen países con altas producciones de energía eólica como los países miembros de la comunidad Schengen, y conocer de esta forma en que se puede mejorar y como aprovechar las oportunidades que brinda el territorio colombiano con sus fortalezas y debilidades en un mercado variable como lo es el de energías renovables actualmente. Por otra parte, Uno de los objetivos fundamentales de este trabajo es evaluar técnicamente el proyecto, así como el costo nivelado de energía para cumplir con los requerimientos de demanda energética.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Useche-Narvaez, C., Montes-Páez, E. G., & Guerrero-Martin, C. A. (2022). Evaluation of the carbon footprint produced by conventional artificial lift systems in a Colombian field. Journal of Petroleum Science and Engineering, 208, 108865., DOI: https://doi.org/10.1016/j.petrol.2021.108865.
  2. Schiffer, H. W. (2008). WEC energy policy scenarios to 2050. Energy policy, 36(7), 2464-2470. DOI: https://doi.org/10.1016/j.enpol.2008.02.045
  3. Wright, R., Shin, H., & Trentmann, F. (2013). From World Power Conference to World Energy Council. World Energy Council.
  4. Colgan, J. D. (2009). The international energy agency. Challenges for the 21st Century. GPPi Energy Policy Paper, 6.
  5. Florini, A. (2011). The International Energy Agency in global energy governance. Global Policy, 2, 40-50. DOI: https://doi.org/10.1111/j.1758-5899.2011.00120.x
  6. Aslani, A., Antila, E., & Wong, K. F. V. (2012). Comparative analysis of energy security in the Nordic countries: The role of renewable energy resources in diversification. Journal of Renewable and Sustainable Energy, 4(6), 062701. DOI: https://doi.org/10.1063/1.4765695
  7. Contreras, J., y Rodríguez, Y. E. (2016). Incentives for wind power investment in Colombia. Renewable Energy, 87, 279–288. http://doi.org/10.1016/j.renene.2015.10.018
  8. Oliveira Maran, A. L., Guerrero-Martin, C., Montes-Páez, E., & Ando Junior, O. H. (2021). Modelling and simulation of a thermoelectric waste heat recovery system-TWRHS. Dyna, 88(217), 265-272. DOI: https://doi.org/10.15446/dyna.v88n217.94431
  9. Maya Ochoa, C., Hernández Betancur, J. D., & Gallego Múnera, Ó. M. (2012). La valoración de proyectos de energía eólica en Colombia bajo el enfoque de opciones reales. Cuadernos de Administración, 25(44), 193-231.
  10. Realpe Jimenez, A., Diazgranados, J. A., & Acevedo Morantes, M. T. (2012). Electricity generation and wind potential assessment in regions of Colombia. Dyna, 79(171), 116-122.
  11. Antonanzas-Torres, F., Urraca, R., Guerrero, C. A. C., & Blanco-Fernandez, J. (2021). Solar E-Cooking with Low-Power Solar Home Systems for Sub-Saharan Africa. Sustainability, 13(21), 12241. DOI: https://doi.org/10.3390/su132112241
  12. Cadena-Triana, L. M., Campos Padilha Lopes, M., Guerrero-Martin, L., Montes-Páez, E., & Guerrero-Martin, C. (2021). Assessment of use of concentrated solar power technology for steam generation and subsequent injection in a Colombian oil field: an application of solar EOR. Dyna, 88(217), 220-227.
  13. Faxas Gúzman, J. G., & Guerrero Liquet, G. C. (2015). Análisis de toma de decisión con AHP/ANP de energías renovables en República Dominicana.
  14. Silveyra, J. M., Ferrara, E., Huber, D. L., & Monson, T. C. (2018). Soft magnetic materials for a sustainable and electrified world. Science, 362(6413), eaao0195. DOI: 10.1126/science.aao0195
  15. Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755-764. DOI: https://doi.org/10.1016/j.renene.2018.03.089
  16. IEA. (2020). International Energy Agency. Retrieved from https://www.iea.org/regions/europe
  17. Universidad Nacional de Colombia, & Empresa de Energia de Bogota SA. Energia: Sus perspectivas, su conversion y utilizaciones en colombia. Universidad Nacional de Colombia.
  18. UPME. (2007). Ministerio de Minas y Energía. Unidad de Planeación Minero Energética. 200. Plan Energético Nacional, Contexto y Estrategias 2006-2025. Bogotá D.C.
  19. Eras, J. J. C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia.
  20. Vergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., & Benoit, P. (2010). Wind energy in Colombia: a framework for market entry. World Bank Publications.
  21. Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider. context. Technology in Society, 49, 1-15. DOI: https://doi.org/10.1016/j.techsoc.2017.01.002
  22. León-Vargas, F., Krejci, E., & García-Jaramillo, M. (2016). Preliminary analysis of wind power in 4 Colombian cities, and utilization estimates with urban wind turbines. Tecciencia, 11(21), 53-59. DOI: http://dx.doi.org/10.18180/tecciencia.2016.21.9
  23. World Wind Energy Association. (2016). The world sets new wind installations record: 63, 7 GW new capacity in 2015. Technology Report.
  24. Gsänger, S., & Pitteloud, J. D. (2015). 2015 Small Wind World Report Summary, Report by World Wind Energy Association, March 2015.
  25. Change, I. C. (2013). The physical science basis.
  26. Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Santos, C. S. (2017). Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renewable Energy, 101, 29-40. DOI: https://doi.org/10.1016/j.renene.2016.08.036
  27. Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114, 1224-1239. DOI: https://doi.org/10.1016/j.energy.2016.08.068
  28. Medina, M., Ramírez, A. M. G., Amorim, P., Macualo, F. H. E., & Martin, C. A. G. (2019). Selección de campos para la implementación de solar EOR como proceso térmico de recobro mejorado en Colombia. Fuentes: El reventón energético, 17(2), 27-37. DOI: https://doi.org/10.18273/revfue.v17n2-2019004
  29. Rueda-Bayona, Juan Gabriel, et al. "Renewables energies in Colombia and the opportunity for the offshore wind technology." Journal of Cleaner Production 220 (2019): 529-543.
  30. Pena Gallardo, Rafael, Adalberto Ospino Castro, and Aurelio Medina Ríos. "An image processing-based method to assess the monthly energetic complementarity of solar and wind energy in Colombia." Energies 13.5 (2020): 1033.
  31. Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36, 100531.
  32. Arce, L., & Bayne, S. (2020). Analysis of offshore wind energy in Colombia: current status and future opportunities. International Journal of Engineering Research, 9(11), 610-619.
  33. Maya Ochoa, C., Hernández Betancur, J. D., & Gallego Múnera, Ó. M. (2012). La valoración de proyectos de energía eólica en Colombia bajo el enfoque de opciones reales. Cuadernos de Administración, 25(44), 193-231.
  34. Valencia, A. M. (2008). Missing links: Demystifying alternative energy use and improving decision making for increased off-grid electrification in Colombia. University of California, Berkeley.
  35. Vélez-Henao, J. A., & Vivanco, D. F. (2021). Hybrid life cycle assessment of an onshore wind farm including direct and indirect services: A case study in Guajira, Colombia. Journal of Environmental Management, 284, 112058.
  36. Rai, P. K., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological indicators, 111, 106020.
  37. Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36, 100531.
  38. Vides-Prado, Andres, et al. "Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira." Renewable and Sustainable Energy Reviews 82 (2018): 4245-4255.
  39. OjedaCamargo, E., Riaño, H. H., Valencia, L. B., Sarmiento, A. B., & Becerra, J. C. (2016). StrategiesApplied forRenewable Energy Source Adoption in Indigenous Communities of La Guajira, Colombia.
  40. Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529-543.
  41. Guangul, F. M., & Chala, G. T. (2019, January). SWOT analysis of wind energy as a promising conventional fuels substitute. In 2019 4th MEC international conference on big data and smart city (ICBDSC) (pp. 1-6). IEEE.
  42. Fang, X., Minke, A., Pomeroy, J., Brown, T., Westbrook, C., Guo, X., & Guangul, S. (2007). A review of Canadian Prairie hydrology: Principles, modelling and response to land use and drainage change. Center for Hydrology Report, 2.
  43. Villacreses, G., Gaona, G., Martínez-Gómez, J., & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable energy, 109, 275-286.
  44. Boubaker, K., Colantoni, A., Marucci, A., Longo, L., Gambella, F., Cividino, S., ... & Cecchini, M. (2016). Perspective and potential of CO2: A focus on potentials for renewable energy conversion in the Mediterranean basin. Renewable energy, 90, 248-256.
  45. Forero Nunez, C. A., Jochum, J., & Sierra Vargas, F. E. (2012). Characterization and feasibility of biomass fuel pellets made of Colombian timber, coconut and oil palm residues regarding European standards. Environmental biotechnology, 8.
  46. Aristizabal, A. J., & Gordillo, G. (2008). Performance monitoring results of the first grid-connected BIPV system in Colombia. Renewable Energy, 33(11), 2475-2484.
  47. Sethi, M., Lamb, W., Minx, J., & Creutzig, F. (2020). Climate change mitigation in cities: a systematic scoping of case studies. Environmental Research Letters, 15(9), 093008.
  48. Sattar, M., Mia, S., Shanta, A. A., Biswas, A. K. M., & Ludwig, F. (2021). Remote impacts from el niño and la niña on climate variables and major crops production in coastal bangladesh. Atmosphere, 12(11), 1449.
  49. Serrano, J. y Lacal-Arántegui, R. (2016). A review of regulatory framework for wind energy in European Union countries: Current state and expected developments. Renewable and Sustainable Energy Reviews, 56, 588–602. doi:10.1016/j.rser.2015.11.091
  50. Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36, 100531.
  51. Pimienta, B. (2021). Total Electricity Demand Coverage with Solar Energy Systems in La Guajira-Colombia. A techno-economic case study (Master's thesis).
  52. Portillo Diaz, C. D., Montiel Hoyos, C. C., Montes Páez, E. G., & Guerrero Martin, C. A. (2022, April). Wind Potencial as an Oportunity for Energy Transition in Oil and Gas Industry: Colombian Caribbean Offshore Case of Study. In Offshore Technology Conference. OnePetro.
  53. Wolsink, M. (2000). Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support. Renewable energy, 21(1), 49-64.
  54. Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529-543.
  55. Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, 49, 1-15.
  56. Ayoub, M., & Abdullah, A. Z. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16(5), 2671-2686.
  57. Igliński, B., Iglińska, A., Koziński, G., Skrzatek, M., & Buczkowski, R. (2016). Wind energy in Poland–history, current state, surveys, renewable energy sources Act, SWOT analysis. Renewable and Sustainable Energy Reviews, 64, 19-33.
  58. Pinilla, A., Rodríguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48-52.
  59. Vergara, W. Deeb, A. Toba, N. Cramton, P. Leino, I. (2010). Energía eólica en Colombia: un marco para la entrada al mercado. Estudio del Banco Mundial. Banco Mundial. © Banco Mundial. https://openknowledge.worldbank.org/handle/10986/2493 Licencia: CC BY 3.0 IGO
  60. Isaac, I., González, J., Areiza, J., Biechl, H., Cardona, H., & Lopez, G. (2010, November). Large scale integration of wind energy in Colombia: Electrical analysis-part I. In 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA) (pp. 231-238). IEEE.
  61. Gómez, E., Vásquez, D. M., & Gómez, C. Z. (2005). Derivative markets' impact on Colombian monetary policy. Banco de la República.
  62. García, J. B., Rendón, Á. H., Franco, H., & Guzmán, J. G. (2018). Monetary Policy and Accumulation of Reserves in an Emerging Economy: A DSGE Model for the Colombian Case. Revista de economía del Rosario, 21(2), 309-339.
  63. Botero García, J. A., Franco González, H., & García Guzmán, J. (2018). Monetary Policy and Accumulation of Reserves in an Emerging Economy: A dsge Model for the Colombian Case. Universidad del Rosario.
  64. Medina, M., Ramírez, A. M. G., Amorim, P., Macualo, F. H. E., & Martin, C. A. G. (2019). Selección de campos para la implementación de solar EOR como proceso térmico de recobro mejorado en Colombia. Fuentes: El reventón energético, 17(2), 27-37.
  65. Vanegas, P. A. V., Ruiz, T. Y. Z., Macualo, F. H. E., & Martin, C. A. G. (2019). Metodología para la formulación de proyectos de recuperación química mediante analogías.
  66. Igliński, B., Iglińska, A., Koziński, G., Skrzatek, M., & Buczkowski, R. (2016). Wind energy in Poland–history, current state, surveys, renewable energy sources Act, SWOT analysis. Renewable and Sustainable Energy Reviews, 64, 19-33.
  67. Lupu, A. G., Dumencu, A., Atanasiu, M. V., Panaite, C. E., Dumitrașcu, G., & Popescu, A. (2016, August). SWOT analysis of the renewable energy sources in Romania-case study: solar energy. In IOP Conference Series: Materials Science and Engineering (Vol. 147, No. 1, p. 012138). IOP Publishing.
  68. Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., ... & Masera, O. (2015). Bioenergy and climate change mitigation: an assessment. Gcb Bioenergy, 7(5), 916-944.
  69. Soto-Valle, R., Bartholomay, S., Alber, J., Manolesos, M., Nayeri, C. N., & Paschereit, C. O. (2020). Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements. Wind Energy Science, 5(4), 1771-1792.
  70. Ligus, M., Wisniewski, G., Michałowska-Knap, K., Arcipowska, A., Kaminska, M., & Maciejewski, Z. (2012). Comparative analysis of wind energy and nuclear power and their potential to create jobs. Report for Greenpeace Polska and Heinrich Boll Stiftung Warszawa, 2nd Revised Edition.
  71. Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, 49, 1-15.
  72. Pinilla, A., Rodríguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48-52.
  73. Rahman, Y. A. (2021, November). The Potential of Conversion of Sea Wave Energy to Electric Energy: The Performance of Central Sulawesi West Sea using Oscillating Water Column Technology. In IOP Conference Series: Earth and Environmental Science (Vol. 926, No. 1, p. 012073). IOP Publishing.
  74. Atienza, J. C., Martín Fierro, I., Infante, O., Valls, J., & Domínguez, J. (2011). Guidelines for Assessing the Impact of Wind Farms on Birds and bats (version 4.0). SEO/BirdLife, Madrid.