Vol. 21 No. 1 (2023): Fuentes, el reventón energético
Articles

INFLUENCE OF STEAM INJECTION OPERATIONAL PARAMETERS ON THE PROPERTIES OF HEAVY CRUDES UNDERGOING AQUATHERMOLYSIS REACTIONS

Luis Miguel Salas-Chia
Grupo de Recobro Mejorado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander (UIS) Carrera 27 Calle 9. Bucaramanga, Colombia.
Paola Andrea León Naranjo
Grupo de Recobro Mejorado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander (UIS) Carrera 27 Calle 9. Bucaramanga, Colombia.
Victoria Eugenia Mousalli Diaz
Grupo de Recobro Mejorado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander (UIS) Carrera 27 Calle 9. Bucaramanga, Colombia.
Maika Gambús-Ordaz
Grupo de Investigacion en Estabilidad de Pozos, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander (UIS) Carrera 27 Calle 9. Bucaramanga, Colombia.
Adan Yovani León Bermúdez
Grupo de Investigación en Corrosión, Escuela de Ingeniería Metalúrgica y Ciencia de Materiales, Universidad Industrial de Santander (UIS). Carrera 27 Calle 9. Bucaramanga, Colombia.

Published 2023-06-07

Keywords

  • aquathermolysis,
  • systematic review,
  • experimental test,
  • enhanced oil recovery

How to Cite

Salas-Chia, L. M., León Naranjo, P. A., Mousalli Diaz, V. E. ., Gambús-Ordaz, M., & León Bermúdez, A. Y. (2023). INFLUENCE OF STEAM INJECTION OPERATIONAL PARAMETERS ON THE PROPERTIES OF HEAVY CRUDES UNDERGOING AQUATHERMOLYSIS REACTIONS. Fuentes, El reventón energético, 21(1), 65–81. https://doi.org/10.18273/revfue.v21n1-2023005

Abstract

Steam injection has been one of the most widely used thermal enhanced recovery techniques for the exploitation of heavy crudes in oil fields. These processes present physical recovery mechanisms, such as viscosity decrease, as well as chemical ones mainly associated to the occurrence of in-situ reactions. The production of gases such as H2S, CO2 and CO associated with the implementation of steam injection raised the possibility of the occurrence of chemical reactions in the reservoir, which have been the subject of research in recent years. Aquathermolysis is the name given to the reactions that are generated with the interaction of hydrocarbon and water during steam injection processes carried out in temperature ranges from 200 to 300 °C. The current research aims to perform a literature review on aquathermolysis reactions by means of laboratory tests. In order to carry out this study, a systematic review methodology was established, with the purpose of covering a large amount of research found in different databases. As a result, it is possible to find behaviors in the operational parameters used in the laboratory tests, such as the effect of the water/crude ratio, the operating temperature, the residence time and the addition of catalytic agents and minerals.

Downloads

Download data is not yet available.

References

  1. Alemán-Vázquez, L. O., Torres-Mancera, P., Ancheyta, J., & Ramírez-Salgado, J. (2016). Use of Hydrogen Donors for Partial Upgrading of Heavy Petroleum. Energy & Fuels, 30, 9050–9060. https://doi.org/10.1021/acs.energyfuels.6b01656
  2. Alvarez, E., Marroquín, G., Trejo, F., Centeno, G., Ancheyta, J., & Díaz, J. A. I. (2011). Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel, 90(12), 3602–3607. https://doi.org/10.1016/j.fuel.2010.11.046
  3. Alvarez, J., & Han, S. (2013). Current Overview of Cyclic Steam Injection Process. Journal of Petroleum Science Research, 2(3), 116–127.
  4. Babadagli, T. (2020). Philosophy of EOR. Journal of Petroleum Science and Engineering, 188, 1–24. https://doi.org/10.1016/j.petrol.2020.106930
  5. Belgrave, J. D. M., Moore, R. G., & Ursenbach, M. G. (1994). Gas Evolution From the Aquathermolysis of Heavy Oils. The Canadian Journal of Chemical Engineering, 72, 511–516.
  6. Brons, G., & Siskin, M. (1994). Bitumen chemical changes during aquathermolytic treatments of Cold Lake tar sands. Fuel, 73(2), 183–191. https://doi.org/10.1016/0016-2361(94)90112-0
  7. Castro, R., Maya, G., Mercado, D., Trujillo, M., Soto, C., Pérez, H., & Lobo, A. (2010). Enhanced Oil Recovery (EOR) Status - Colombia.
  8. Cochrane. (2019). Cochrane Handbook for Systematic Reviews of Interventions (J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, & V. A. Welch, Eds.; Second). Wiley-Blackwell.
  9. Chao, K., Chen, Y., Li, J., Zhang, X., & Dong, B. (2012). Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper. Fuel Processing Technology, 104, 174–180. https://doi.org/10.1016/j.fuproc.2012.05.010
  10. Chao, K., Chen, Y., Liu, H., Zhang, X., & Li, J. (2012). Laboratory Experiments and Field Test of a Difunctional Catalyst for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels, 26(2), 1152–1159. https://doi.org/10.1021/ef2018385
  11. Chávez Morales, S. M. (2016). Experimental and Numerical Simulation of Combined Enhanced Oil Recovery with In Situ. University of Calgary.
  12. Chen, G., Yan, J., Bai, Y., Gu, X., Zhang, J., Li, Y., & Jeje, A. (2017). Clean aquathermolysis of heavy oil catalyzed by Fe (III) complex at relatively low temperature. Petroleum Science and Technology, 35(2), 113–119. https://doi.org/10.1080/10916466.2016.1255644
  13. Chen, Q. Y., Liu, Y. J., & Zhao, J. (2011). Intensified viscosity reduction of heavy oil by using reservoir minerals and chemical agents in aquathermolysis. Advanced Materials Research, 236–238, 839– 843. https://doi.org/10.4028/www.scientific.net/AMR.236-238.839
  14. Chen, Y., Wang, Y., Wu, C., & Xia, F. (2008). Laboratory Experiments and Field Tests of an Amphiphilic Metallic Chelate for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels, 22(3), 1502–1508. https://doi.org/10.1021/ef8000136
  15. Chen, Y., Yang, C., & Wang, Y. (2010). Gemini catalyst for catalytic aquathermolysis of heavy oil. Journal of Analytical and Applied Pyrolysis, 89(2), 159–165. https://doi.org/10.1016/j.jaap.2010.07.005
  16. Dong, L., Liu, Y. J., Xu, K. M., Zhao, F. J., Liu, W. W., & Kong, X. W. (2013). Laboratory experiment research and field tests on catalyst of aquathermolysis of heavy oils. Advanced Materials Research, 773, 298–303. https://doi.org/10.4028/www.scientific.net/AMR.773.298
  17. Fan, H. (2003). The effects of reservoir minerals on the composition changes of heavy oil during steam stimulation. Journal of Canadian Petroleum Technology, 42(3), 11–14. https://doi.org/10.2118/03-03-TN1
  18. Fan, H., Liu, Y.-J., & Zhong, L.-G. (2001). Studies on the Synergetic Effects of Mineral and Steam on the Composition Changes of Heavy Oils. Energy & Fuels, 15(6), 1475–1479. https://doi.org/10.1021/ef0100911
  19. Fan, H., Zhang, Y., & Lin, Y. (2004). The catalytic effects of minerals on aquathermolysis of heavy oils. Fuel, 83(14-15 SPEC. ISS.), 2035–2039. https://doi.org/10.1016/j.fuel.2004.04.010
  20. Foss, L., Petrukhina, N., Kayukova, G., Amerkhanov, M., & Romanov, G. (2018). Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates. Journal of Petroleum Science and Engineering, 169, 269–276. https://doi.org/10.1016/j.petrol.2018.04.061
  21. Garcia-Navas, E. O., & Perez-Ayala, G. E. (2020). Aplicación de fluidificantes como agentes reductores de viscosidad para mejorar la producción de crudos pesados colombianos. Revista ION, 33(2), 111–122.
  22. Gu, H., Cheng, L., Huang, S., Li, B., Shen, F., Fang, W., & Hu, C. (2015). Steam injection for heavy oil recovery: Modelling of wellbore heat efficiency and analysis of steam injection performance. Energy Conversion and Management, 97, 166–177. https://doi.org/10.1016/j.enconman.2015.03.057
  23. Guo, K., Li, H., & Yu, Z. (2016). In-situ heavy and extra-heavy oil recovery: A review. Fuel, 185, 886– 902. https://doi.org/10.1016/j.fuel.2016.08.047
  24. Hama, M. Q., Wei, M., Saleh, L. D., & Bai, B. (2014). Updated Screening Criteria for Steam Flooding Based on Oil Field Projects Data. SPE Heavy Oil Conference-Canada, 1–20. http://onepetro.org/SPECHOC/proceedings-pdf/14HOCC/3-14HOCC/D031S021R005/1546276/spe-170031-ms.pdf
  25. Hamedi Shokrlu, Y., & Babadagli, T. (2014). Kinetics of the In-Situ Upgrading of Heavy Oil by Nickel Nanoparticle Catalysts and Its Effect on Cyclic-Steam-Stimulation Recovery Factor. SPE Reservoir Evaluation & Engineering, 17(03), 355–364. https://doi.org/10.2118/170250-PA
  26. Hanzlik, E. J., & Mims, D. S. (2003). Forty Years of Steam Injection in California - The Evolution of Heat Management. SPE International Improved Oil Recovery Conference in Asia Pacific, 1–8. https://doi.org/10.2118/84848-MS
  27. Hao, H., Su, H., Chen, G., Zhao, J., & Hong, L. (2015). Viscosity Reduction of Heavy Oil by Aquathermolysis with Coordination Complex at Low Temperature. The Open Fuels & Energy Science Journal, 8(1), 93–98. https://doi.org/10.2174/1876973x01508010093
  28. Hyne, J. B. (1986). Aquathermolysis: A synopsis of work on the chemical reaction between water (steam) and heayy oil sands during simulated steam stimulation. In AOSTRA Publication Series (Vol. 50). AOSTRA Publication Series.
  29. Hyne, J. B., Clark, P. D., Clarke, R. A., Koo, J., & Greidanus, J. W. (1982). Aquathermolysis of heavy oils. INTEVEP, 2(2), 87–94.
  30. Ivanova, I., Kutlizamaev, R., Safin, B., Grishko, A., Sitnov, S., Slavkina, O., & Shchekoldin, K. (2020). Influence of metal oxides and their precursors on the composition of final products of aquathermolysis crude oil. IOP Conference Series: Earth and Environmental Science, 516(1). https://doi.org/10.1088/1755-1315/516/1/012037
  31. Jiang, S., Liu, X., Liu, Y., & Zhong, L. (2005). In Situ Upgrading Heavy Oil by Aquathermolytic Treatment Under Steam Injection Conditions. SPE International Symposium on Oilfield Chemistry, 8.
  32. Kapadia, P. R., Kallos, M. S., & Gates, I. D. (2013). A new reaction model for aquathermolysis of Athabasca bitumen. Canadian Journal of Chemical Engineering, 91(3), 475–482. https://doi.org/10.1002/cjce.21662
  33. Kapadia, P. R., Kallos, M. S., & Gates, I. D. (2015). A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen. Fuel Processing Technology, 131, 270–289. https://doi.org/10.1016/j.fuproc.2014.11.027
  34. Karacan, C. Ö., & Okandan, E. (1997). Change of physical and thermal decomposition properties of in situ heavy oil with steam temperature. Petroleum Science and Technology, 15(5–6), 429–443. https://doi.org/10.1080/10916469708949668
  35. Kayukova, G. P., Feoktistov, D. A., Mikhailova, A. N., Kosachev, I. P., Musin, R. Z., & Vakhin, A. v. (2018). Influence of the Nature of Metals and Modifying Additives on Changes in the Structure of Heavy Oil in a Catalytic Aquathermolysis System. Petroleum Chemistry, 58(3), 190–196. https://doi.org/10.1134/S0965544118030118
  36. Kayukova, G. P., Foss, L. E., Feoktistov, D. A., Vakhin, A. v., Petrukhina, N. N., & Romanov, G. v. (2017). Transformations of hydrocarbons of Ashal’hinskoe heavy oil under catalytic aquathermolysis conditions. Petroleum Chemistry, 57(8), 657–665. https://doi.org/10.1134/S0965544117050061
  37. León, P. A., Bottía, H., Molina V, D., Martínez Vertel, J. J., Muñoz, S. F., & León, A. Y. (2022). Catalytic upgrading evaluation under steam injection conditions with spectroscopy 1H-NMR. Petroleum Science and Technology. https://doi.org/10.1080/10916466.2022.2025834
  38. Lin, R., Song, D., Wang, X., & Yang, D. (2016). Experimental Determination of In Situ Hydrogen Sulfide Production during Thermal Recovery Processes. Energy & Fuels, 30(7), 5323–5329. https://doi.org/10.1021/acs.energyfuels.5b02646
  39. Liu, J., Wu, X., Sun, S., & Hao, L. (2022a). The Application of Complex Displacement in Cyclic Steam Stimulation CSS & Steam Flooding SF Development in Liaohe Oilfield: A Field Performance Study. SPE Canadian Energy Technology Conference, 1–8.
  40. Liu, J., Wu, X., Sun, S., & Hao, L. (2022b). The Application of Complex Displacement in Cyclic Steam Stimulation CSS & Steam Flooding SF Development in Liaohe Oilfield: A Field Performance Study. SPE Canadian Energy Technology Conference, 1–8. https://doi.org/10.2118/208940-MS
  41. Liu, Y., & Fan, H. (2002). The Effect of Hydrogen Donor Additive on the Viscosity of Heavy Oil during Steam Stimulation. Energy & Fuels, 16(4), 842–846. https://doi.org/10.1021/ef010247x
  42. Maity, S. K., Ancheyta, J., & Marroquín, G. (2010). Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review. Energy and Fuels, 24(5), 2809–2816. https://doi.org/10.1021/ef100230k
  43. Mecón Méndez, S. G., Salas-Chia, L. M., Martínez Vertel, J. J., Velasco, D. R. M., León, A. Y., & León, P. A. (2022). Effect of Mineralogy on the Physicochemical Properties of a Heavy Crude Oil in Hybrid Steam Injection Technologies Using 1H NMR. Energy and Fuels, 36(17), 10315–10326. https://doi.org/10.1021/acs.energyfuels.2c01027
  44. Meyer, R. F., Attanasi, E. D., & Freeman, P. A. (2007). Heavy Oil and Natural Bitumen Resources in Geological Basins of the World. http://pubs.usgs.gov/of/2007/
  45. Mohammad, A. A. A., & Mamora, D. D. (2008). Insitu Upgrading of Heavy Oil Under Steam Injection With Tetralin and Catalyst. SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium This, 11. https://doi.org/10.2118/117604-ms
  46. Mukhamatdinov, I. I., Salih, I. S., & Vakhin, A. v. (2019). Changes in the subfractional composition of heavy oil asphaltenes under aquathermolysis with oil-soluble CO-based catalyst. Petroleum Science and Technology, 37(13), 1589–1595. https://doi.org/10.1080/10916466.2019.1594287
  47. Muraza, O., & Galadima, A. (2015). Aquathermolysis of heavy oil: A review and perspective on catalyst development. In Fuel (pp. 219–231). https://doi.org/10.1016/j.fuel.2015.04.065
  48. Nuñez-Méndez, K. S., Salas-Chia, L. M., Daniel, M. v., Muñoz Navarro, S. F., León Naranjo, P. A., & León Bermúdez, A. Y. (2021). Effect of the Catalytic Aquathermolysis Process on the Physicochemical Properties of a Colombian Crude Oil. Energy&Fuels, 35(6), 5231–5240. https://doi.org/10.1021/acs.energyfuels.0c04142
  49. Petrov, S., Lahova, A., Sitnov, S., Slavkina, O., & Shchekoldin, K. (2020). Hydrothermal influence of heavy oil in the presence of minerals of carbonate rock. IOP Conference Series: Earth and Environmental Science, 516(1). https://doi.org/10.1088/1755-1315/516/1/012035
  50. Petrov, S. M., Safiulina, A. G., Bashkirtseva, N. Y., Lakhova, A. I., & Islamova, G. G. (2021). Influence of metal oxides and their precursors on the composition of final products of aquathermolysis of raw ashalchin oil. Processes, 9(2), 1–19. https://doi.org/10.3390/pr9020256
  51. Petrukhina, N. N., Kayukova, G. P., Romanov, G. v., Tumanyan, B. P., Foss, L. E., Kosachev, I. P., Musin, R. Z., Ramazanova, A. I., & Vakhin, A. v. (2014). Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aquathermolysis. Chemistry and Technology of Fuels and Oils, 50(4), 315–326. https://doi.org/10.1007/s10553-014-0528-y
  52. Pratama, R. A., & Babadagli, T. (2022). A review of the mechanics of heavy-oil recovery by steam injection with chemical additives. Journal of Petroleum Science and Engineering, 208, 109717. https://doi.org/10.1016/j.petrol.2021.109717
  53. Ramey, H. J. (1967). A current review of oil recovery by steam injection. 7th World Petroleum Congress, 471–476. http://onepetro.org/WPCONGRESS/proceedings-pdf/WPC07/All-WPC07/2084257/wpc-12247.pdf
  54. Ren, R., Liu, H., Chen, Y., Li, J., & Chen, Y. (2015). Improving the Aquathermolysis Efficiency of Aromatics in Extra-Heavy Oil by Introducing Hydrogen-Donating Ligands to Catalysts. Energy & Fuels, 29(12), 7793–7799. https://doi.org/10.1021/acs.energyfuels.5b01256
  55. Rivas, O. R., Campos, R. E., & Borges, L. G. (1988). Experimental Evaluation of Transition Metals Salt Solutions as Additives in Steam Recovery Processes. SPE Annual Technical Conference and Exhibition, 9. https://doi.org/10.2118/18076-MS
  56. Safari, M., Gholami, R., Khajehvandi, E., & Mohammadi, M. (2020). Temperature profile estimation: A study on the Boberg and Lantz steam stimulation model. Petroleum, 6(1), 92–97. https://doi.org/10.1016/J.PETLM.2019.07.002
  57. Salas-Chia, L.M., Naranjo, P.A.L. & Bermúdez, A.Y.L. Effect of Rock on Aquathermolysis Reactions at Laboratory Scale (A Review). Pet. Chem. (2022). https://doi.org/10.1134/S0965544122100164
  58. Singhal, A. K., Ito, Y., & Kasraie, M. (1998). Screening and Design Criteria for Steam Assisted Gravity Drainage (SAGD) Projects. SPE International Conference On Horizontal Well Technology, 1–7.
  59. Song, S.-F., Guo, Z., Bai, Y., Gu, X.-F., Chen, G., Zhang, J., Li, B.-Q., Zhang, & Z.-F., & Zhang, Z.-F. (2017). The use of a tartaric-Co (II) complex in the catalytic aquathermolysis of heavy oil. Petroleum Science and Technology, 35(7), 661–666. https://doi.org/10.1080/10916466.2016.1273239
  60. Suhag, A., Ranjith, R., Balaji, K., Peksaglam, Z., Malik, V., Zhang, M., Biopharm, F., Putra, D., Energy, R., Wijaya, Z., Dhannoon, D., Temizel, C., & Aminzadeh, F. (2017). Optimization of Steamflooding Heavy Oil Reservoirs. SPE Western Regional Meeting, 1–35. https://doi.org/10.2118/185653-ms
  61. Trigos, E., Lozano, E., & Jimenez, A. M. (2018). CSS: Strategies to Recovery Optimization. SPE Europec, 1–13. http://onepetro.org/SPEEURO/proceedings-pdf/18EURO/4-18EURO/D041S011R003/1208740/spe-190791-ms.pdf
  62. Wang, Y., Chen, Y., He, J., Li, P., & Yang, C. (2010). Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+. Energy & Fuels, 24(3), 1502–1510. https://doi.org/10.1021/ef901339k
  63. Weissman, J. G. (1997). Review of processes for downhole catalytic upgrading of heavy crude oil. Fuel Processing Technology, 50(2–3), 199–213. https://doi.org/10.1016/S03783820(96)01067-3
  64. Wen, S., Zhao, Y., Liu, Y., & Hu, S. (2007). A Study on Catalytic Aquathermolysis of Heavy Crude Oil During Steam Stimulation. International Symposium on Oilfield Chemistry, 1–5. https://doi.org/https://doi.org/10.2118/106180-MS
  65. Willman, B. T., Valleroy, V. v., Runberc, C. W., Cornelius, A. J., & Powers L. W. (1961). Laboratory Studies of Oil Recovery by Steam Injection ABSTRACT. Journal of Petroleum Technology, 13(7), 681–690. http://onepetro.org/JPT/articlepdf/13/07/681/2237442/spe1537-g-pa.pdf/1
  66. Xu, H., & Pu, C. (2018). Mechanism of Underground Heavy Oil Catalytic Aquathermolysis. Chemistry and Technology of Fuels and Oils, 53(6), 913–921. https://doi.org/10.1007/s10553-018-0881-3
  67. Xu, Y., Ayala-Orozco, C., & Wong, M. S. (2018). Heavy Oil Viscosity Reduction Using Iron III para-Toluenesulfonate Hexahydrate. SPE Western Regional Meeting, 2011–2016. https://doi.org/10.2118/190020-MS
  68. Yuan, L., Wang, X., Zhao, K., Pan, H., Li, Q., Yang, J., & Zhang, Z. (2017). Effect of reaction temperature and hydrogen donor on the Ni 0 @ graphene-catalyzed viscosity reduction of extra heavy crude oil. Petroleum Science and Technology, 35(2), 196–200. https://doi.org/10.1080/10916466.2016.1241805
  69. Yusuf, A., Al-Hajri, R. S., Al-Waheibi, Y. M., & Jibril, B. Y. (2016a). In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor. Journal of Analytical and Applied Pyrolysis, 121, 102–112. https://doi.org/10.1016/j.jaap.2016.07.010
  70. Yusuf, A., Al-Hajri, R. S., Al-Waheibi, Y. M., & Jibril, B. Y. (2016b). Upgrading of Omani heavy oil with bimetallic amphiphilic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 67, 45–53. https://doi.org/10.1016/j.jtice.2016.07.020
  71. Zhang, Z., Barrufet, M. A., Lane, R. H., & Mamora, D. D. (2012). Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst Under Steam Injection Condition. SPE Heavy Oil Conference Canada, 1–7. https://doi.org/10.2118/157981-MS
  72. Zhong, L. G., Liu, Y. J., Fan, H. F., & Jiang, S. J. (2003). Liaohe Extra-Heavy Crude Oil Underground Aquathermolytic Treatments Using Catalyst and Hydrogen Donors under Steam Injection Conditions. SPE International Improved Oil Recovery Conference in Asia Pacific, 6. https://doi.org/10.2118/84863-MS
  73. Zou, R., Xu, J., Kuffner, S., Becker, J., Li, T., Guan, X., Zhang, X., Li, L., Cohen Stuart, M. A., & Guo, X. (2019). Spherical Poly (vinyl imidazole) Brushes Loading Nickel Cations as Nanocatalysts for Aquathermolysis of Heavy Crude Oil. Energy & Fuels, 32(2), 998–1006. https://doi.org/10.1021/acs.energyfuels.8b03964