INFLUENCIA DE PARÁMETROS OPERACIONALES DE LA INYECCIÓN DE VAPOR SOBRE LAS PROPIEDADES DE CRUDOS PESADOS SOMETIDOS A REACCIONES DE ACUATERMÓLISIS
Publicado 2023-06-07
Palavras-chave
- acuatermólisis,
- revisión sistemática,
- pruebas experimentales,
- recobro mejorado
Como Citar
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
La inyección de vapor ha sido una de las técnicas de recobro mejorado térmico más empleadas para la explotación de crudos
pesados en los campos petroleros. Estos procesos presentan mecanismos de recuperación físicos, como la disminución de
viscosidad, y químicos relacionados principalmente a la ocurrencia de reacciones in-situ. La producción de gases como H2S, CO2 y CO asociados a la implementación de la inyección de vapor planteó la posibilidad de la ocurrencia de reacciones químicas
en el yacimiento, las cuales han sido tema de investigación durante los últimos años. La acuatermólisis es el nombre que se da a las reacciones que se generan de la interacción del hidrocarburo con el agua entre rangos de temperatura de 200 a 300°C. La presente investigación tiene como objetivo ejecutar una revisión documental sobre las reacciones de acuatermólisis mediante pruebas de laboratorio. Para llevar a cabo este estudio se establece una metodología de revisión sistemática, con el propósito de abarcar gran cantidad de investigaciones encontradas la literatura. Como resultado, se logró encontrar y analizar comportamientos en los parámetros operacionales empleados en las pruebas de laboratorio como el efecto de la relación agua/ crudo, la temperatura de operación, el tiempo de residencia y la adición de agentes catalíticos y minerales.
Downloads
Referências
- Alemán-Vázquez, L. O., Torres-Mancera, P., Ancheyta, J., & Ramírez-Salgado, J. (2016). Use of Hydrogen Donors for Partial Upgrading of Heavy Petroleum. Energy & Fuels, 30, 9050–9060. https://doi.org/10.1021/acs.energyfuels.6b01656
- Alvarez, E., Marroquín, G., Trejo, F., Centeno, G., Ancheyta, J., & Díaz, J. A. I. (2011). Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel, 90(12), 3602–3607. https://doi.org/10.1016/j.fuel.2010.11.046
- Alvarez, J., & Han, S. (2013). Current Overview of Cyclic Steam Injection Process. Journal of Petroleum Science Research, 2(3), 116–127.
- Babadagli, T. (2020). Philosophy of EOR. Journal of Petroleum Science and Engineering, 188, 1–24. https://doi.org/10.1016/j.petrol.2020.106930
- Belgrave, J. D. M., Moore, R. G., & Ursenbach, M. G. (1994). Gas Evolution From the Aquathermolysis of Heavy Oils. The Canadian Journal of Chemical Engineering, 72, 511–516.
- Brons, G., & Siskin, M. (1994). Bitumen chemical changes during aquathermolytic treatments of Cold Lake tar sands. Fuel, 73(2), 183–191. https://doi.org/10.1016/0016-2361(94)90112-0
- Castro, R., Maya, G., Mercado, D., Trujillo, M., Soto, C., Pérez, H., & Lobo, A. (2010). Enhanced Oil Recovery (EOR) Status - Colombia.
- Cochrane. (2019). Cochrane Handbook for Systematic Reviews of Interventions (J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, & V. A. Welch, Eds.; Second). Wiley-Blackwell.
- Chao, K., Chen, Y., Li, J., Zhang, X., & Dong, B. (2012). Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper. Fuel Processing Technology, 104, 174–180. https://doi.org/10.1016/j.fuproc.2012.05.010
- Chao, K., Chen, Y., Liu, H., Zhang, X., & Li, J. (2012). Laboratory Experiments and Field Test of a Difunctional Catalyst for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels, 26(2), 1152–1159. https://doi.org/10.1021/ef2018385
- Chávez Morales, S. M. (2016). Experimental and Numerical Simulation of Combined Enhanced Oil Recovery with In Situ. University of Calgary.
- Chen, G., Yan, J., Bai, Y., Gu, X., Zhang, J., Li, Y., & Jeje, A. (2017). Clean aquathermolysis of heavy oil catalyzed by Fe (III) complex at relatively low temperature. Petroleum Science and Technology, 35(2), 113–119. https://doi.org/10.1080/10916466.2016.1255644
- Chen, Q. Y., Liu, Y. J., & Zhao, J. (2011). Intensified viscosity reduction of heavy oil by using reservoir minerals and chemical agents in aquathermolysis. Advanced Materials Research, 236–238, 839– 843. https://doi.org/10.4028/www.scientific.net/AMR.236-238.839
- Chen, Y., Wang, Y., Wu, C., & Xia, F. (2008). Laboratory Experiments and Field Tests of an Amphiphilic Metallic Chelate for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels, 22(3), 1502–1508. https://doi.org/10.1021/ef8000136
- Chen, Y., Yang, C., & Wang, Y. (2010). Gemini catalyst for catalytic aquathermolysis of heavy oil. Journal of Analytical and Applied Pyrolysis, 89(2), 159–165. https://doi.org/10.1016/j.jaap.2010.07.005
- Dong, L., Liu, Y. J., Xu, K. M., Zhao, F. J., Liu, W. W., & Kong, X. W. (2013). Laboratory experiment research and field tests on catalyst of aquathermolysis of heavy oils. Advanced Materials Research, 773, 298–303. https://doi.org/10.4028/www.scientific.net/AMR.773.298
- Fan, H. (2003). The effects of reservoir minerals on the composition changes of heavy oil during steam stimulation. Journal of Canadian Petroleum Technology, 42(3), 11–14. https://doi.org/10.2118/03-03-TN1
- Fan, H., Liu, Y.-J., & Zhong, L.-G. (2001). Studies on the Synergetic Effects of Mineral and Steam on the Composition Changes of Heavy Oils. Energy & Fuels, 15(6), 1475–1479. https://doi.org/10.1021/ef0100911
- Fan, H., Zhang, Y., & Lin, Y. (2004). The catalytic effects of minerals on aquathermolysis of heavy oils. Fuel, 83(14-15 SPEC. ISS.), 2035–2039. https://doi.org/10.1016/j.fuel.2004.04.010
- Foss, L., Petrukhina, N., Kayukova, G., Amerkhanov, M., & Romanov, G. (2018). Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates. Journal of Petroleum Science and Engineering, 169, 269–276. https://doi.org/10.1016/j.petrol.2018.04.061
- Garcia-Navas, E. O., & Perez-Ayala, G. E. (2020). Aplicación de fluidificantes como agentes reductores de viscosidad para mejorar la producción de crudos pesados colombianos. Revista ION, 33(2), 111–122.
- Gu, H., Cheng, L., Huang, S., Li, B., Shen, F., Fang, W., & Hu, C. (2015). Steam injection for heavy oil recovery: Modelling of wellbore heat efficiency and analysis of steam injection performance. Energy Conversion and Management, 97, 166–177. https://doi.org/10.1016/j.enconman.2015.03.057
- Guo, K., Li, H., & Yu, Z. (2016). In-situ heavy and extra-heavy oil recovery: A review. Fuel, 185, 886– 902. https://doi.org/10.1016/j.fuel.2016.08.047
- Hama, M. Q., Wei, M., Saleh, L. D., & Bai, B. (2014). Updated Screening Criteria for Steam Flooding Based on Oil Field Projects Data. SPE Heavy Oil Conference-Canada, 1–20. http://onepetro.org/SPECHOC/proceedings-pdf/14HOCC/3-14HOCC/D031S021R005/1546276/spe-170031-ms.pdf
- Hamedi Shokrlu, Y., & Babadagli, T. (2014). Kinetics of the In-Situ Upgrading of Heavy Oil by Nickel Nanoparticle Catalysts and Its Effect on Cyclic-Steam-Stimulation Recovery Factor. SPE Reservoir Evaluation & Engineering, 17(03), 355–364. https://doi.org/10.2118/170250-PA
- Hanzlik, E. J., & Mims, D. S. (2003). Forty Years of Steam Injection in California - The Evolution of Heat Management. SPE International Improved Oil Recovery Conference in Asia Pacific, 1–8. https://doi.org/10.2118/84848-MS
- Hao, H., Su, H., Chen, G., Zhao, J., & Hong, L. (2015). Viscosity Reduction of Heavy Oil by Aquathermolysis with Coordination Complex at Low Temperature. The Open Fuels & Energy Science Journal, 8(1), 93–98. https://doi.org/10.2174/1876973x01508010093
- Hyne, J. B. (1986). Aquathermolysis: A synopsis of work on the chemical reaction between water (steam) and heayy oil sands during simulated steam stimulation. In AOSTRA Publication Series (Vol. 50). AOSTRA Publication Series.
- Hyne, J. B., Clark, P. D., Clarke, R. A., Koo, J., & Greidanus, J. W. (1982). Aquathermolysis of heavy oils. INTEVEP, 2(2), 87–94.
- Ivanova, I., Kutlizamaev, R., Safin, B., Grishko, A., Sitnov, S., Slavkina, O., & Shchekoldin, K. (2020). Influence of metal oxides and their precursors on the composition of final products of aquathermolysis crude oil. IOP Conference Series: Earth and Environmental Science, 516(1). https://doi.org/10.1088/1755-1315/516/1/012037
- Jiang, S., Liu, X., Liu, Y., & Zhong, L. (2005). In Situ Upgrading Heavy Oil by Aquathermolytic Treatment Under Steam Injection Conditions. SPE International Symposium on Oilfield Chemistry, 8.
- Kapadia, P. R., Kallos, M. S., & Gates, I. D. (2013). A new reaction model for aquathermolysis of Athabasca bitumen. Canadian Journal of Chemical Engineering, 91(3), 475–482. https://doi.org/10.1002/cjce.21662
- Kapadia, P. R., Kallos, M. S., & Gates, I. D. (2015). A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen. Fuel Processing Technology, 131, 270–289. https://doi.org/10.1016/j.fuproc.2014.11.027
- Karacan, C. Ö., & Okandan, E. (1997). Change of physical and thermal decomposition properties of in situ heavy oil with steam temperature. Petroleum Science and Technology, 15(5–6), 429–443. https://doi.org/10.1080/10916469708949668
- Kayukova, G. P., Feoktistov, D. A., Mikhailova, A. N., Kosachev, I. P., Musin, R. Z., & Vakhin, A. v. (2018). Influence of the Nature of Metals and Modifying Additives on Changes in the Structure of Heavy Oil in a Catalytic Aquathermolysis System. Petroleum Chemistry, 58(3), 190–196. https://doi.org/10.1134/S0965544118030118
- Kayukova, G. P., Foss, L. E., Feoktistov, D. A., Vakhin, A. v., Petrukhina, N. N., & Romanov, G. v. (2017). Transformations of hydrocarbons of Ashal’hinskoe heavy oil under catalytic aquathermolysis conditions. Petroleum Chemistry, 57(8), 657–665. https://doi.org/10.1134/S0965544117050061
- León, P. A., Bottía, H., Molina V, D., Martínez Vertel, J. J., Muñoz, S. F., & León, A. Y. (2022). Catalytic upgrading evaluation under steam injection conditions with spectroscopy 1H-NMR. Petroleum Science and Technology. https://doi.org/10.1080/10916466.2022.2025834
- Lin, R., Song, D., Wang, X., & Yang, D. (2016). Experimental Determination of In Situ Hydrogen Sulfide Production during Thermal Recovery Processes. Energy & Fuels, 30(7), 5323–5329. https://doi.org/10.1021/acs.energyfuels.5b02646
- Liu, J., Wu, X., Sun, S., & Hao, L. (2022a). The Application of Complex Displacement in Cyclic Steam Stimulation CSS & Steam Flooding SF Development in Liaohe Oilfield: A Field Performance Study. SPE Canadian Energy Technology Conference, 1–8.
- Liu, J., Wu, X., Sun, S., & Hao, L. (2022b). The Application of Complex Displacement in Cyclic Steam Stimulation CSS & Steam Flooding SF Development in Liaohe Oilfield: A Field Performance Study. SPE Canadian Energy Technology Conference, 1–8. https://doi.org/10.2118/208940-MS
- Liu, Y., & Fan, H. (2002). The Effect of Hydrogen Donor Additive on the Viscosity of Heavy Oil during Steam Stimulation. Energy & Fuels, 16(4), 842–846. https://doi.org/10.1021/ef010247x
- Maity, S. K., Ancheyta, J., & Marroquín, G. (2010). Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review. Energy and Fuels, 24(5), 2809–2816. https://doi.org/10.1021/ef100230k
- Mecón Méndez, S. G., Salas-Chia, L. M., Martínez Vertel, J. J., Velasco, D. R. M., León, A. Y., & León, P. A. (2022). Effect of Mineralogy on the Physicochemical Properties of a Heavy Crude Oil in Hybrid Steam Injection Technologies Using 1H NMR. Energy and Fuels, 36(17), 10315–10326. https://doi.org/10.1021/acs.energyfuels.2c01027
- Meyer, R. F., Attanasi, E. D., & Freeman, P. A. (2007). Heavy Oil and Natural Bitumen Resources in Geological Basins of the World. http://pubs.usgs.gov/of/2007/
- Mohammad, A. A. A., & Mamora, D. D. (2008). Insitu Upgrading of Heavy Oil Under Steam Injection With Tetralin and Catalyst. SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium This, 11. https://doi.org/10.2118/117604-ms
- Mukhamatdinov, I. I., Salih, I. S., & Vakhin, A. v. (2019). Changes in the subfractional composition of heavy oil asphaltenes under aquathermolysis with oil-soluble CO-based catalyst. Petroleum Science and Technology, 37(13), 1589–1595. https://doi.org/10.1080/10916466.2019.1594287
- Muraza, O., & Galadima, A. (2015). Aquathermolysis of heavy oil: A review and perspective on catalyst development. In Fuel (pp. 219–231). https://doi.org/10.1016/j.fuel.2015.04.065
- Nuñez-Méndez, K. S., Salas-Chia, L. M., Daniel, M. v., Muñoz Navarro, S. F., León Naranjo, P. A., & León Bermúdez, A. Y. (2021). Effect of the Catalytic Aquathermolysis Process on the Physicochemical Properties of a Colombian Crude Oil. Energy&Fuels, 35(6), 5231–5240. https://doi.org/10.1021/acs.energyfuels.0c04142
- Petrov, S., Lahova, A., Sitnov, S., Slavkina, O., & Shchekoldin, K. (2020). Hydrothermal influence of heavy oil in the presence of minerals of carbonate rock. IOP Conference Series: Earth and Environmental Science, 516(1). https://doi.org/10.1088/1755-1315/516/1/012035
- Petrov, S. M., Safiulina, A. G., Bashkirtseva, N. Y., Lakhova, A. I., & Islamova, G. G. (2021). Influence of metal oxides and their precursors on the composition of final products of aquathermolysis of raw ashalchin oil. Processes, 9(2), 1–19. https://doi.org/10.3390/pr9020256
- Petrukhina, N. N., Kayukova, G. P., Romanov, G. v., Tumanyan, B. P., Foss, L. E., Kosachev, I. P., Musin, R. Z., Ramazanova, A. I., & Vakhin, A. v. (2014). Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aquathermolysis. Chemistry and Technology of Fuels and Oils, 50(4), 315–326. https://doi.org/10.1007/s10553-014-0528-y
- Pratama, R. A., & Babadagli, T. (2022). A review of the mechanics of heavy-oil recovery by steam injection with chemical additives. Journal of Petroleum Science and Engineering, 208, 109717. https://doi.org/10.1016/j.petrol.2021.109717
- Ramey, H. J. (1967). A current review of oil recovery by steam injection. 7th World Petroleum Congress, 471–476. http://onepetro.org/WPCONGRESS/proceedings-pdf/WPC07/All-WPC07/2084257/wpc-12247.pdf
- Ren, R., Liu, H., Chen, Y., Li, J., & Chen, Y. (2015). Improving the Aquathermolysis Efficiency of Aromatics in Extra-Heavy Oil by Introducing Hydrogen-Donating Ligands to Catalysts. Energy & Fuels, 29(12), 7793–7799. https://doi.org/10.1021/acs.energyfuels.5b01256
- Rivas, O. R., Campos, R. E., & Borges, L. G. (1988). Experimental Evaluation of Transition Metals Salt Solutions as Additives in Steam Recovery Processes. SPE Annual Technical Conference and Exhibition, 9. https://doi.org/10.2118/18076-MS
- Safari, M., Gholami, R., Khajehvandi, E., & Mohammadi, M. (2020). Temperature profile estimation: A study on the Boberg and Lantz steam stimulation model. Petroleum, 6(1), 92–97. https://doi.org/10.1016/J.PETLM.2019.07.002
- Salas-Chia, L.M., Naranjo, P.A.L. & Bermúdez, A.Y.L. Effect of Rock on Aquathermolysis Reactions at Laboratory Scale (A Review). Pet. Chem. (2022). https://doi.org/10.1134/S0965544122100164
- Singhal, A. K., Ito, Y., & Kasraie, M. (1998). Screening and Design Criteria for Steam Assisted Gravity Drainage (SAGD) Projects. SPE International Conference On Horizontal Well Technology, 1–7.
- Song, S.-F., Guo, Z., Bai, Y., Gu, X.-F., Chen, G., Zhang, J., Li, B.-Q., Zhang, & Z.-F., & Zhang, Z.-F. (2017). The use of a tartaric-Co (II) complex in the catalytic aquathermolysis of heavy oil. Petroleum Science and Technology, 35(7), 661–666. https://doi.org/10.1080/10916466.2016.1273239
- Suhag, A., Ranjith, R., Balaji, K., Peksaglam, Z., Malik, V., Zhang, M., Biopharm, F., Putra, D., Energy, R., Wijaya, Z., Dhannoon, D., Temizel, C., & Aminzadeh, F. (2017). Optimization of Steamflooding Heavy Oil Reservoirs. SPE Western Regional Meeting, 1–35. https://doi.org/10.2118/185653-ms
- Trigos, E., Lozano, E., & Jimenez, A. M. (2018). CSS: Strategies to Recovery Optimization. SPE Europec, 1–13. http://onepetro.org/SPEEURO/proceedings-pdf/18EURO/4-18EURO/D041S011R003/1208740/spe-190791-ms.pdf
- Wang, Y., Chen, Y., He, J., Li, P., & Yang, C. (2010). Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+. Energy & Fuels, 24(3), 1502–1510. https://doi.org/10.1021/ef901339k
- Weissman, J. G. (1997). Review of processes for downhole catalytic upgrading of heavy crude oil. Fuel Processing Technology, 50(2–3), 199–213. https://doi.org/10.1016/S03783820(96)01067-3
- Wen, S., Zhao, Y., Liu, Y., & Hu, S. (2007). A Study on Catalytic Aquathermolysis of Heavy Crude Oil During Steam Stimulation. International Symposium on Oilfield Chemistry, 1–5. https://doi.org/https://doi.org/10.2118/106180-MS
- Willman, B. T., Valleroy, V. v., Runberc, C. W., Cornelius, A. J., & Powers L. W. (1961). Laboratory Studies of Oil Recovery by Steam Injection ABSTRACT. Journal of Petroleum Technology, 13(7), 681–690. http://onepetro.org/JPT/articlepdf/13/07/681/2237442/spe1537-g-pa.pdf/1
- Xu, H., & Pu, C. (2018). Mechanism of Underground Heavy Oil Catalytic Aquathermolysis. Chemistry and Technology of Fuels and Oils, 53(6), 913–921. https://doi.org/10.1007/s10553-018-0881-3
- Xu, Y., Ayala-Orozco, C., & Wong, M. S. (2018). Heavy Oil Viscosity Reduction Using Iron III para-Toluenesulfonate Hexahydrate. SPE Western Regional Meeting, 2011–2016. https://doi.org/10.2118/190020-MS
- Yuan, L., Wang, X., Zhao, K., Pan, H., Li, Q., Yang, J., & Zhang, Z. (2017). Effect of reaction temperature and hydrogen donor on the Ni 0 @ graphene-catalyzed viscosity reduction of extra heavy crude oil. Petroleum Science and Technology, 35(2), 196–200. https://doi.org/10.1080/10916466.2016.1241805
- Yusuf, A., Al-Hajri, R. S., Al-Waheibi, Y. M., & Jibril, B. Y. (2016a). In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor. Journal of Analytical and Applied Pyrolysis, 121, 102–112. https://doi.org/10.1016/j.jaap.2016.07.010
- Yusuf, A., Al-Hajri, R. S., Al-Waheibi, Y. M., & Jibril, B. Y. (2016b). Upgrading of Omani heavy oil with bimetallic amphiphilic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 67, 45–53. https://doi.org/10.1016/j.jtice.2016.07.020
- Zhang, Z., Barrufet, M. A., Lane, R. H., & Mamora, D. D. (2012). Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst Under Steam Injection Condition. SPE Heavy Oil Conference Canada, 1–7. https://doi.org/10.2118/157981-MS
- Zhong, L. G., Liu, Y. J., Fan, H. F., & Jiang, S. J. (2003). Liaohe Extra-Heavy Crude Oil Underground Aquathermolytic Treatments Using Catalyst and Hydrogen Donors under Steam Injection Conditions. SPE International Improved Oil Recovery Conference in Asia Pacific, 6. https://doi.org/10.2118/84863-MS
- Zou, R., Xu, J., Kuffner, S., Becker, J., Li, T., Guan, X., Zhang, X., Li, L., Cohen Stuart, M. A., & Guo, X. (2019). Spherical Poly (vinyl imidazole) Brushes Loading Nickel Cations as Nanocatalysts for Aquathermolysis of Heavy Crude Oil. Energy & Fuels, 32(2), 998–1006. https://doi.org/10.1021/acs.energyfuels.8b03964