Vol. 22 No. 1 (2024): Fuentes, el reventón energético
Articles

EFFECT OF GRAPHENE OXIDE AQUEOUS DISPERSIONS ON ROCK WETTABILITY

José Carlos Cárdenas
Instituto Colombiano del Petróleo-ICP
Angelli Stephanie Pérez
Instituto Colombiano del Petróleo-ICP
Rodrigo Torres Saez
Instituto Colombiano del Petróleo-ICP
Emiliano Ariza León
Universidad Industrial de Santander

Published 2024-04-12

Keywords

  • Permeability Modifier,
  • Rock Wettability,
  • Graphene Oxide

How to Cite

Cárdenas, J. C. ., Pérez, A. S. ., Torres Saez, R. ., & Ariza León, E. (2024). EFFECT OF GRAPHENE OXIDE AQUEOUS DISPERSIONS ON ROCK WETTABILITY. Fuentes, El reventón energético, 22(1), 21–34. https://doi.org/10.18273/revfue.v22n1-2024002

Abstract

Among the various methods to improve oil recovery from reservoirs (wells stimulation), the use of nanofluids has emerged as a promising alternative for modifying the wettability and permeability of sandstone rocks. For this reason, in this study, graphene oxide (GO) was synthesized from graphite, and a nanofluid was formulated using GO dispersed in water to evaluate its capacity for modifying wettability on sandstone core plugs from Colombian reservoirs. The experimental setup included three preliminary tests: visual wettability, contact angle measurements, and detergency. The results demonstrated an increase in the water wettability of the rocks, leading to a decrease in the contact angle of the water-rock system by up to 42.6%. Additionally, the visual wettability and detergency tests yielded positive results, indicating that graphene oxide is an effective wettability modifier, rendering the rock more water-wet.

Downloads

Download data is not yet available.

References

  1. Aftab, A., Ismail, A. R., & Ibupoto, Z. H. (2017). Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egyptian Journal of Petroleum, 26(2), 291–299. https://doi.org/10.1016/j.ejpe.2016.05.004
  2. Ammar, A., Al-Enizi, A. M., Al-Maadeed, M., & Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, 9(2), 274–286. https://doi.org/10.1016/j.arabjc.2015.07.006
  3. Bennett, B., Buckman, J.O., Bowler, B., & Larter, S. R. (2004). Wettability alteration in petroleum systems: the role of polar non-hydrocarbons. Petroleum Geoscience, 10(3), 271–277. https://doi.org/10.1144/1354-079303-606
  4. Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: a new emerging lubricant. Materials Today, 17(1), 31–42. https://doi.org/10.1016/j.mattod.2013.12.003
  5. Chun, H., Zhiqiang, T., & Guancheng, J. (1999). Effect of wettability on water injection recovery factor of heavy oil reservoir of Kendong Block 29. Oil Drilling & Production Technology, 21(3), 92-94.
  6. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460. https://doi.org/10.1038/nature06016
  7. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g
  8. Dumée, L. F., He, L., Wang, Z., Sheath, P., Xiong, J., Feng, C., Tan, M.Y., She, F., Duke, M., Gray, S., Pacheco, A., Hodgson, P., Majumder, M., & Kong, L. (2015). Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon, 87, 395–408. https://doi.org/10.1016/j.carbon.2015.02.042
  9. Espinoza, J. M. (2014). Daño a la formación en pozos petroleros, Bachelor’s thesis, Universidad Nacional Autónoma de México. https://hdl.handle.net/20.500.14330/TES01000715173
  10. Fang, S., Chen, T., Wang, R., Xiong, Y., Chen, B., & Duan, M. (2016). Assembly of Graphene Oxide at the Crude Oil/Water Interface: A New Approach to Efficient Demulsification. Energy & Fuels, 30(4), 3355–3364. https://doi.org/10.1021/acs.energyfuels.6b00195
  11. Franco, C. A., Zabala, R. D., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39–55. https://doi.org/10.1016/j.petrol.2017.07.004
  12. Geng, Y., Wang, S. J., & Kim, J-K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336(2), 592–598. https://doi.org/10.1016/j.jcis.2009.04.005
  13. Gómez, I. (2012). Síntesis y caracterización de grafeno químicamente reducido, empleando técnicas espectroscópicas y microscopía electrónica de barrido, Bachelor’s tesis - Universidad Industrial de Santander.
  14. Guo, H-L., Wang, X-F., Qian, Q-Y., Wang, F.-B, & Xia, X-H. (2009). A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano, 3(9), 2653–2659. https://doi.org/10.1021/nn900227d
  15. Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204. https://doi.org/10.1016/j.memsci.2014.11.043
  16. Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 132(23), 8180–8186. https://doi.org/10.1021/ja102777p
  17. Kumar, H.V., Huang, K. Y-S., Ward, S. P., & Adamson, D. H. (2017). Altering and investigating the surfactant properties of graphene oxide. Journal of Colloid and Interface Science, 493, 365–370. https://doi.org/10.1016/j.jcis.2017.01.043.
  18. Liu, R., Gong, T., Zhang, K., & Lee, C. (2017). Graphene oxide papers with high water adsorption capacity for air dehumidification. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09777-y
  19. Liu, C., Yang, J., Tang, Y., Yin, L., Tang, H., & Li, C. (2015). Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 10–16. https://doi.org/10.1016/j.colsurfa.2014.12.005
  20. Liu, Y., Zhou, J., Zhu, E., Tang, J., Liu, X., & Tang, W. (2015). Covalently intercalated graphene oxide for oil–water separation. Carbon, 82, 264–272. https://doi.org/10.1016/j.carbon.2014.10.070
  21. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
  22. McCoy, T. M., Pottage, M. J., & Tabor, R. F. (2014). Graphene Oxide-Stabilized Oil-inWater Emulsions: pH-Controlled Dispersion and Flocculation. The Journal of Physical Chemistry C, 118(8), 4529–4535. https://doi.org/10.1021/jp500072a
  23. Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-jpt
  24. Neto, A., & Fileti, E. E. (2018). Elucidating the amphiphilic character of graphene oxide. Physical Chemistry Chemical Physics, 20(14), 9507–9515. https://doi.org/10.1039/c8cp00797g
  25. Neuberger, N., Adidharma, H., & Fan, M. (2018). Graphene: A review of applications in the petroleum industry. Journal of Petroleum Science and Engineering, 167, 152–159. https://doi.org/10.1016/j.petrol.2018.04.016
  26. Nurrohman, N., Almisbahi, H., Albeirutty, M., Bamaga, O., Almatrafi, E., Tocci, E. (2023). Graphene coating reduces the heat transfer performance of water vapor condensation on copper surfaces: A molecular simulation study. Alexandria Engineering Journal, 82, 101-125. https://doi.org/10.1016/j.aej.2023.09.076
  27. Qiu, L., Zhang, X., Yang, W., Wang, Y., Simon, G. P., & Li, D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 47(20), 5810-5812. https://doi.org/10.1039/c1cc10720h
  28. Radnia, H., Nazar, A., & Rashidi, A. (2017). Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 80, 34–45. https://doi.org/10.1016/j.jtice.2017.07.033
  29. Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8(6), 1679–1682. https://doi.org/10.1021/nl080604h
  30. Singhbabu, Y. N., Sivakumar, B., Singh, J. K., Bapari, H., Pramanick, A. K., & Sahu, R. K. (2015). Efficient anti-corrosive coating of coldrolled steel in a seawater environment using an oil-based graphene oxide ink. Nanoscale, 7(17), 8035–8047. https://doi.org/10.1039/c5nr01453k
  31. Terrones, M., Botello-Méndez, A. R., CamposDelgado, J., López–Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz‐Sandoval, E., Cano-Márquez, A. G., Charlier, J. C., & Terrones, H. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010
  32. Vanegas, C. L., Buendia, H., & Carrillo, L. F. (2016). Evaluación y selección de un inhibidor multiscale para prevenir la formación de incrustaciones inorgánicas en un campo petrolero colombiano. Fuentes, el reventón energético, 14(2), 111-120. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/6075
  33. Wang, Y-L., Ma, L., Bai, B-J., Jiang, G., Jin, J-F., & Wang, Z-B. (2013). Wettability Alteration of Sandstone by Chemical Treatments. Journal of Chemistry, 1–8. https://doi.org/10.1155/2013/845031
  34. Wang, D., Sun, S., Cui, K., Li, H., Gong, Y., Hou, J., & Zhang, Z. (2019). Wettability Alteration in Low-Permeability Sandstone Reservoirs by “SiO2–Rhamnolipid” Nanofluid. Energy & Fuels, 33(12), 12170–12181. https://doi.org/10.1021/acs.energyfuels.9b01930
  35. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. The Journal of Physical Chemistry C, 112(22), 8192–8195. https://doi.org/10.1021/jp710931h
  36. Wei, N., Lv, C., & Xu, Z. (2014). Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir, 30(12), 3572–3578. https://doi.org/10.1021/la500513x
  37. Xu, L., Ma, T-B., Hu, Y-Z., & Wang, H. (2011). Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology, 22(28), 285708. https://doi.org/10.1088/0957-4484/22/28/285708
  38. Xuan, Y., Jiang, G., & Li, Y. (2014). Nanographite Oxide as Ultrastrong Fluid-Loss-Control Additive in Water-Based Drilling Fluids. Journal of Dispersion Science and Technology, 35(10), 1386–1392. https://doi.org/10.1080/01932691.2013.858350
  39. Yoon, K. Y., An, S. J., Chen, Y., Lee, J. H., Bryant, S. L., Ruoff, R. S., Huh, C., & Johnston, K. P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science, 403, 1–6. https://doi.org/10.1016/j.jcis.2013.03.012
  40. You, Y., Sahajwalla, V., Yoshimura, M., & Joshi, R. (2016). Graphene and graphene oxide for desalination. Nanoscale, 8(1), 117–119. https://doi.org/10.1039/c5nr06154g
  41. Zhang, L., Shi, T., Tan, D., Zhou, H., & Zhou, X. (2014). Pickering Emulsion Polymerization of Styrene Stabilized by the Mixed Particles of Graphene Oxide and NaCl. Fullerenes Nanotubes and Carbon Nanostructures, 22(8), 726–737. https://doi.org/10.1080/1536383x.2012.731581
  42. Zhou, K., & Xu, Z. (2020). Ion Permeability and Selectivity in Composite Nanochannels: Engineering through the End Effects. Journal of Physical Chemistry C, 124(8), 4890–4898. https://doi.org/10.1021/acs.jpcc.9b11750
  43. Zhou, L., Zhou, L., Wei, Z., Ge, X., Zhou, J., Jiang, H., Li, F., Shen, J. (2014). Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 135, 7-16. https://doi.org/10.1016/j.jphotobiol.2014.04.010