Published 2024-04-12
Keywords
- Permeability Modifier,
- Rock Wettability,
- Graphene Oxide
How to Cite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Among the various methods to improve oil recovery from reservoirs (wells stimulation), the use of nanofluids has emerged as a promising alternative for modifying the wettability and permeability of sandstone rocks. For this reason, in this study, graphene oxide (GO) was synthesized from graphite, and a nanofluid was formulated using GO dispersed in water to evaluate its capacity for modifying wettability on sandstone core plugs from Colombian reservoirs. The experimental setup included three preliminary tests: visual wettability, contact angle measurements, and detergency. The results demonstrated an increase in the water wettability of the rocks, leading to a decrease in the contact angle of the water-rock system by up to 42.6%. Additionally, the visual wettability and detergency tests yielded positive results, indicating that graphene oxide is an effective wettability modifier, rendering the rock more water-wet.
Downloads
References
- Aftab, A., Ismail, A. R., & Ibupoto, Z. H. (2017). Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egyptian Journal of Petroleum, 26(2), 291–299. https://doi.org/10.1016/j.ejpe.2016.05.004
- Ammar, A., Al-Enizi, A. M., Al-Maadeed, M., & Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, 9(2), 274–286. https://doi.org/10.1016/j.arabjc.2015.07.006
- Bennett, B., Buckman, J.O., Bowler, B., & Larter, S. R. (2004). Wettability alteration in petroleum systems: the role of polar non-hydrocarbons. Petroleum Geoscience, 10(3), 271–277. https://doi.org/10.1144/1354-079303-606
- Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: a new emerging lubricant. Materials Today, 17(1), 31–42. https://doi.org/10.1016/j.mattod.2013.12.003
- Chun, H., Zhiqiang, T., & Guancheng, J. (1999). Effect of wettability on water injection recovery factor of heavy oil reservoir of Kendong Block 29. Oil Drilling & Production Technology, 21(3), 92-94.
- Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460. https://doi.org/10.1038/nature06016
- Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g
- Dumée, L. F., He, L., Wang, Z., Sheath, P., Xiong, J., Feng, C., Tan, M.Y., She, F., Duke, M., Gray, S., Pacheco, A., Hodgson, P., Majumder, M., & Kong, L. (2015). Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon, 87, 395–408. https://doi.org/10.1016/j.carbon.2015.02.042
- Espinoza, J. M. (2014). Daño a la formación en pozos petroleros, Bachelor’s thesis, Universidad Nacional Autónoma de México. https://hdl.handle.net/20.500.14330/TES01000715173
- Fang, S., Chen, T., Wang, R., Xiong, Y., Chen, B., & Duan, M. (2016). Assembly of Graphene Oxide at the Crude Oil/Water Interface: A New Approach to Efficient Demulsification. Energy & Fuels, 30(4), 3355–3364. https://doi.org/10.1021/acs.energyfuels.6b00195
- Franco, C. A., Zabala, R. D., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39–55. https://doi.org/10.1016/j.petrol.2017.07.004
- Geng, Y., Wang, S. J., & Kim, J-K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336(2), 592–598. https://doi.org/10.1016/j.jcis.2009.04.005
- Gómez, I. (2012). Síntesis y caracterización de grafeno químicamente reducido, empleando técnicas espectroscópicas y microscopía electrónica de barrido, Bachelor’s tesis - Universidad Industrial de Santander.
- Guo, H-L., Wang, X-F., Qian, Q-Y., Wang, F.-B, & Xia, X-H. (2009). A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano, 3(9), 2653–2659. https://doi.org/10.1021/nn900227d
- Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204. https://doi.org/10.1016/j.memsci.2014.11.043
- Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 132(23), 8180–8186. https://doi.org/10.1021/ja102777p
- Kumar, H.V., Huang, K. Y-S., Ward, S. P., & Adamson, D. H. (2017). Altering and investigating the surfactant properties of graphene oxide. Journal of Colloid and Interface Science, 493, 365–370. https://doi.org/10.1016/j.jcis.2017.01.043.
- Liu, R., Gong, T., Zhang, K., & Lee, C. (2017). Graphene oxide papers with high water adsorption capacity for air dehumidification. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09777-y
- Liu, C., Yang, J., Tang, Y., Yin, L., Tang, H., & Li, C. (2015). Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 10–16. https://doi.org/10.1016/j.colsurfa.2014.12.005
- Liu, Y., Zhou, J., Zhu, E., Tang, J., Liu, X., & Tang, W. (2015). Covalently intercalated graphene oxide for oil–water separation. Carbon, 82, 264–272. https://doi.org/10.1016/j.carbon.2014.10.070
- Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
- McCoy, T. M., Pottage, M. J., & Tabor, R. F. (2014). Graphene Oxide-Stabilized Oil-inWater Emulsions: pH-Controlled Dispersion and Flocculation. The Journal of Physical Chemistry C, 118(8), 4529–4535. https://doi.org/10.1021/jp500072a
- Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-jpt
- Neto, A., & Fileti, E. E. (2018). Elucidating the amphiphilic character of graphene oxide. Physical Chemistry Chemical Physics, 20(14), 9507–9515. https://doi.org/10.1039/c8cp00797g
- Neuberger, N., Adidharma, H., & Fan, M. (2018). Graphene: A review of applications in the petroleum industry. Journal of Petroleum Science and Engineering, 167, 152–159. https://doi.org/10.1016/j.petrol.2018.04.016
- Nurrohman, N., Almisbahi, H., Albeirutty, M., Bamaga, O., Almatrafi, E., Tocci, E. (2023). Graphene coating reduces the heat transfer performance of water vapor condensation on copper surfaces: A molecular simulation study. Alexandria Engineering Journal, 82, 101-125. https://doi.org/10.1016/j.aej.2023.09.076
- Qiu, L., Zhang, X., Yang, W., Wang, Y., Simon, G. P., & Li, D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 47(20), 5810-5812. https://doi.org/10.1039/c1cc10720h
- Radnia, H., Nazar, A., & Rashidi, A. (2017). Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 80, 34–45. https://doi.org/10.1016/j.jtice.2017.07.033
- Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8(6), 1679–1682. https://doi.org/10.1021/nl080604h
- Singhbabu, Y. N., Sivakumar, B., Singh, J. K., Bapari, H., Pramanick, A. K., & Sahu, R. K. (2015). Efficient anti-corrosive coating of coldrolled steel in a seawater environment using an oil-based graphene oxide ink. Nanoscale, 7(17), 8035–8047. https://doi.org/10.1039/c5nr01453k
- Terrones, M., Botello-Méndez, A. R., CamposDelgado, J., López–Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz‐Sandoval, E., Cano-Márquez, A. G., Charlier, J. C., & Terrones, H. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010
- Vanegas, C. L., Buendia, H., & Carrillo, L. F. (2016). Evaluación y selección de un inhibidor multiscale para prevenir la formación de incrustaciones inorgánicas en un campo petrolero colombiano. Fuentes, el reventón energético, 14(2), 111-120. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/6075
- Wang, Y-L., Ma, L., Bai, B-J., Jiang, G., Jin, J-F., & Wang, Z-B. (2013). Wettability Alteration of Sandstone by Chemical Treatments. Journal of Chemistry, 1–8. https://doi.org/10.1155/2013/845031
- Wang, D., Sun, S., Cui, K., Li, H., Gong, Y., Hou, J., & Zhang, Z. (2019). Wettability Alteration in Low-Permeability Sandstone Reservoirs by “SiO2–Rhamnolipid” Nanofluid. Energy & Fuels, 33(12), 12170–12181. https://doi.org/10.1021/acs.energyfuels.9b01930
- Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. The Journal of Physical Chemistry C, 112(22), 8192–8195. https://doi.org/10.1021/jp710931h
- Wei, N., Lv, C., & Xu, Z. (2014). Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir, 30(12), 3572–3578. https://doi.org/10.1021/la500513x
- Xu, L., Ma, T-B., Hu, Y-Z., & Wang, H. (2011). Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology, 22(28), 285708. https://doi.org/10.1088/0957-4484/22/28/285708
- Xuan, Y., Jiang, G., & Li, Y. (2014). Nanographite Oxide as Ultrastrong Fluid-Loss-Control Additive in Water-Based Drilling Fluids. Journal of Dispersion Science and Technology, 35(10), 1386–1392. https://doi.org/10.1080/01932691.2013.858350
- Yoon, K. Y., An, S. J., Chen, Y., Lee, J. H., Bryant, S. L., Ruoff, R. S., Huh, C., & Johnston, K. P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science, 403, 1–6. https://doi.org/10.1016/j.jcis.2013.03.012
- You, Y., Sahajwalla, V., Yoshimura, M., & Joshi, R. (2016). Graphene and graphene oxide for desalination. Nanoscale, 8(1), 117–119. https://doi.org/10.1039/c5nr06154g
- Zhang, L., Shi, T., Tan, D., Zhou, H., & Zhou, X. (2014). Pickering Emulsion Polymerization of Styrene Stabilized by the Mixed Particles of Graphene Oxide and NaCl. Fullerenes Nanotubes and Carbon Nanostructures, 22(8), 726–737. https://doi.org/10.1080/1536383x.2012.731581
- Zhou, K., & Xu, Z. (2020). Ion Permeability and Selectivity in Composite Nanochannels: Engineering through the End Effects. Journal of Physical Chemistry C, 124(8), 4890–4898. https://doi.org/10.1021/acs.jpcc.9b11750
- Zhou, L., Zhou, L., Wei, Z., Ge, X., Zhou, J., Jiang, H., Li, F., Shen, J. (2014). Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 135, 7-16. https://doi.org/10.1016/j.jphotobiol.2014.04.010