Vol. 13 No. 2 (2015): Fuentes, el reventón energético
Articles

Producción de biocombustibles por medio de los procesos termocatalíticos de aceites vegetales: una reseña

Cassio , H. Zandonai
universidade estadual de Maringá, Departamento de engenharia Química, av. Colombo, 5790, Brazil.
Carlos Ortiz Bravo
universidade estadual de Maringá, Departamento de engenharia Química, av. Colombo, 5790, Brazil.
Nadia Fernandes Machado
universidade estadual de Maringá, Departamento de engenharia Química, av. Colombo, 5790, Brazil.

Published 2015-12-03

Keywords

  • Biocombustibles,
  • Pirolisis,
  • Hidroprocesamiento,
  • Aceites vegetales

How to Cite

H. Zandonai, C. , Ortiz Bravo, C., & Fernandes Machado, N. (2015). Producción de biocombustibles por medio de los procesos termocatalíticos de aceites vegetales: una reseña. Fuentes, El reventón energético, 13(2). https://doi.org/10.18273/revfue.v13n2-2015008

Abstract

Con el empeoramiento de los problemas ambientales causados por el efecto invernadero, el estudio de combustibles alternativos generados por fuentes so fósiles ha sido intensifi cado. La incorporación de biodiesel (mono-éster de triglicéridos) a diesel de petróleo es un ejemplo de una aplicación comercial para la reducción en la emisión de CO2 fósil, sOx al igual que nOx. en este contexto, la generación de mezclas de hidrocarburos para craqueo catalítico de aceites vegetales combina las ventajas de los procesos de Transesterifi cación para generar componentes como los combustibles derivados del petróleo, como: gasolina, kerosene y diesel. esta reseña presenta las tendencias actuales en la literatura científi ca para procesos térmicos (pirolisis) y catalíticos en los biocombustibles. Para la pirolisis se han descrito las temperaturas usadas para obtener el combustible en los rangos de diesel. Los procesos catalíticos implican los catalizadores heterogéneos usados en el procesamiento del crudo y las condiciones de presión y temperatura. en conclusión se muestra que el proceso de craqueo catalítico permite elegir que combustible puede buscarse simplemente cambiando la catálisis que es usada

Downloads

Download data is not yet available.

References

1. Abbasov, V., Mammadova, T., Andrushenko, N., Hasankhanova, N., Lvov, Y., & Abdullayev, E. (2014). Halloysite–Y-zeolite blends as novel mesoporous catalysts for the cracking of waste vegetable oils with vacuum gasoil. Fuel, 117, 552– 555. http://doi.org/10.1016/j.fuel.2013.09.013

2. Ahmadi, M., Macias, E. E., Jasinski, J. B., Ratnasamy, P., & Carreon, M. a. (2014). Decarboxylation and further transformation of oleic acid over bifunctional, Pt/SAPO-11 catalyst and Pt/chloride Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 386, 14–19. http://doi.org/10.1016/j. molcata.2014.02.004

3. Asomaning, J., Mussone, P., & Bressler, D. C. (2014a). Pyrolysis of polyunsaturated fatty acids. Fuel Processing Technology, 120, 89–95. http://doi. org/10.1016/j.fuproc.2013.12.007

4. Asomaning, J., Mussone, P., & Bressler, D. C. (2014b). Thermal deoxygenation and pyrolysis of oleic acid. Journal of Analytical and Applied Pyrolysis, 105, 1–7. http://doi.org/10.1016/j. jaap.2013.09.005

5. Bezergianni, S., Dimitriadis, A., & Meletidis, G. (2014). Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures. Fuel, 125, 129–136. http://doi.org/10.1016/j.fuel.2014.02.010

6. Biswas, S., Majhi, S., Mohanty, P., Pant, K. K., & Sharma, D. K. (2014). Effect of different catalyst on the co-cracking of Jatropha oil, vacuum residue and high density polyethylene. Fuel, 133, 96–105. http:// doi.org/10.1016/j.fuel.2014.04.082

7. Biswas, S., & Sharma, D. K. (2013). Studies on cracking of Jatropha oil. Journal of Analytical and Applied Pyrolysis, 99, 122–129. http://doi. org/10.1016/j.jaap.2012.10.013

8. Buzetzki, E., Sidorová, K., Cvengrošová, Z., Kaszonyi, A., & Cvengroš, J. (2011). The influence of zeolite catalysts on the products of rapeseed oil cracking. Fuel Processing Technology, 92(8), 1623– 1631. http://doi.org/10.1016/j.fuproc.2011.04.009

9. Casas, A., Ramos, M. J., & Pérez, Á. (2011a). Kinetics of chemical interesterification of sunflower oil with methyl acetate for biodiesel and triacetin production. Chemical Engineering Journal, 171(3), 1324–1332. http://doi.org/10.1016/j.cej.2011.05.037

10. Casas, A., Ramos, M. J., & Pérez, Á. (2011b). New trends in biodiesel production: Chemical interesterification of sunflower oil with methyl acetate. Biomass and Bioenergy, 35(5), 1702–1709. http://doi.org/10.1016/j.biombioe.2011.01.003

11. Casas, A., Ramos, M. J., & Pérez, Á. (2013). Methanol-enhanced chemical interesterification of sunflower oil with methyl acetate. Fuel, 106(865), 869–872. http://doi.org/10.1016/j.fuel.2012.11.037

12. Chen, Y., Wang, C., Lu, W., & Yang, Z. (2010). Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production. Bioresource Technology, 101(12), 4600–7. http:// doi.org/10.1016/j.biortech.2010.01.071

13. Choudhary, T. V., & Phillips, C. B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1-2), 1–12. http:// doi.org/10.1016/j.apcata.2011.02.025

14. Doronin, V. P., Potapenko, O. V., Lipin, P. V., & Sorokina, T. P. (2013). Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 106, 757– 765. http://doi.org/10.1016/j.fuel.2012.11.027

15. Doronin, V. P., Potapenko, O. V., Lipin, P. V., Sorokina, T. P., & Buluchevskaya, L. a. (2012). Catalytic cracking of vegetable oils for production of high-octane gasoline and petrochemical feedstock. Petroleum Chemistry, 52(6), 392–400. http://doi. org/10.1134/S0965544112060059

16. Dupain, X., Costa, D. J., Schaverien, C. J., Makkee, M., & Moulijn, J. (2007). Cracking of a rapeseed vegetable oil under realistic FCC conditions. App. Cat. B: Env., 72(1-2), 44–61. http://doi. org/10.1016/j.apcatb.2006.10.005

17. Egia, B., Cambra, J. ., Arias, P. ., Güemez, M. ., Legarreta, J. ., Pawelec, B., & Fierro, J. L. . (1998). Surface properties and hydrocracking activity of NiMo zeolite catalysts. Applied Catalysis A: General, 169(1), 37–53. http://doi.org/10.1016/ S0926-860X(97)00320-7

18. Egloff, G., & Morrell, J. C. (1932). The Cracking of Cottonseed Oil. Industrial & Engineering Chemistry, 24(12), 1426–1427. http://doi.org/10.1021/ ie50276a020

19. Egloff, G., & Nelson, E. F. (1933). Cracking Alaskan Fur-Seal Oil. Industrial & Engineering Chemistry, 25(4), 386–387. http://doi.org/10.1021/ie50280a009

20. Fréty, R., Pacheco, J. G. a., Santos, M. R., Padilha, J. F., Azevedo, A. F., Brandão, S. T., & Pontes, L. a. M. (2014). Flash pyrolysis of model compounds adsorbed on catalyst surface: A method for screening catalysts for cracking of fatty molecules. Journal of Analytical and Applied Pyrolysis, 109, 56–64. http:// doi.org/10.1016/j.jaap.2014.07.013

21. Fréty, R., Rocha, M. da G. C. da, Brandão, S. T., Pontes, L. A. M., Padilha, J. F., Borges, L. E. P., & Gonzalez, W. A. (2011). Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. Journal of the Brazilian Chemical Society, 22(7), 1206–1220.

22. Furimsky, E. (2013). Hydroprocessing challenges in biofuels production. Catalysis Today, 217, 13–56. http://doi.org/10.1016/j.cattod.2012.11.008

23. García-Dávila, J., Ocaranza-Sánchez, E., RojasLópez, M., Muñoz-Arroyo, J. a., Ramírez, J., & Martínez-Ayala, a. L. (2014). Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production. Fuel, 135, 380–386. http:// doi.org/10.1016/j.fuel.2014.07.006

24. Gong, S., Shinozaki, A., Shi, M., & Qian, E. W. (2012). Hydrotreating of jatropha oil over alumina based catalysts. Energy and Fuels, 26(4), 2394– 2399. http://doi.org/10.1021/ef300047a

25. Gusmão, J., Brodki, D., Djéga-Mariadassou, G., & Fréty, R. (1989). UTILIZATION OF VEGETABLE OILS AS AN ALTERNATIVE SOURCE FOR DIESEL-TYPE FUEL: HYDROCBACKING ON REDUCED Ni/SiO2 AND SULPHIDED Ni-MO/γ- Al2O3. Catalysis Today, 5, 533–544.

26. Higman, E. E. B., Schmeltz, I., Higman, H. C., & Chortyk, O. T. (1973). Thermal degradation of naturally occurring materials. II. Products from the pyrolysis of triglycerides at 400. deg. Journal of Agricultural Food Chemistry, 21(2), 202–204. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ jf60186a030

27. Idem, R. O., Katikaneni, S. P. R., & Bakhshi, N. N. (1996). Thermal Cracking of Canola Oil : Reaction Products in the Presence and Absence of Steam. Energy & Fuels, 10(16), 1150–1162.

28. Immer, J. G., Kelly, M. J., & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1), 134–139. http://doi. org/10.1016/j.apcata.2009.12.028

29. Ishihara, A., Fukui, N., Nasu, H., & Hashimoto, T. (2014). Hydrocracking of soybean oil using zeolitealumina composite supported NiMo catalysts. Fuel, 134, 611–617. http://doi.org/10.1016/j. fuel.2014.06.004

30. Khadzhiev, S. N., Gerzeliev, I. M., & Demen’tev, K. I. (2013). Catalytic cracking of alternative feedstock and its blends with petroleum fractions on microspherical zeolite-containing catalysts: 1. A review. Petroleum Chemistry, 53(6), 357–361. http://doi.org/10.1134/S096554411306008X

31. Kiatkittipong, W., Phimsen, S., Kiatkittipong, K., Wongsakulphasatch, S., Laosiripojana, N., & Assabumrungrat, S. (2013). Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Processing Technology, 116, 16–26. http://doi.org/10.1016/j.fuproc.2013.04.018

32. Kitamura, K. (1971). Studies of pyrolysis of triglycerides. Bull. Chem. Soc. Jpn., 44(6), 1606– 1609.

33. Krár, M., Kovács, S., Kalló, D., & Hancsók, J. (2010). Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst. Bioresource Technology, 101(23), 9287–9293. http://doi.org/10.1016/j. biortech.2010.06.107

34. Kubátová, A., Luo, Y., Šťávová, J., Sadrameli, S. M., Aulich, T., Kozliak, E., & Seames, W. (2011). New path in the thermal cracking of triacylglycerols (canola and soybean oil). Fuel, 90(8), 2598–2608.http://doi.org/10.1016/j.fuel.2011.04.022

35. Kubička, D., & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2), 199– 208. http://doi.org/10.1016/j.apcata.2009.10.034

36. Kwon, E. E., Yi, H., & Jeon, Y. J. (2014). Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure. Chemosphere, 113, 87–92. http://doi.org/10.1016/j. chemosphere.2014.04.055

37. Lavrenov, A. V., Bogdanets, E. N., Chumachenko, Y. A., & Likholobov, V. A. (2011). Catalytic processes for the production of hydrocarbon biofuels from oil and fatty raw materials: Contemporary approaches. Catalysis in Industry, 3(3), 250–259. http://doi. org/10.1134/S2070050411030044

38. Lima, D. G., Soares, V. C. D., Ribeiro, E. B., Carvalho, D. a., Cardoso, É. C. V., Rassi, F. C., … Suarez, P. a. Z. (2004). Diesel-like fuel obtained by pyrolysis of vegetable oils. Journal of Analytical and Applied Pyrolysis, 71(2), 987–996. http://doi. org/10.1016/j.jaap.2003.12.008

39. Liu, J., Fan, K., Tian, W., Liu, C., & Rong, L. (2012). Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst. International Journal of Hydrogen Energy, 37(23), 17731–17737. http://doi. org/10.1016/j.ijhydene.2012.09.020

40. Liu, J., Liu, C., Zhou, G., Shen, S., & Rong, L. (2012). Hydrotreatment of Jatropha oil over NiMoLa/Al 2 O 3 catalyst. Green Chemistry, 14(9), 2499. http://doi. org/10.1039/c2gc35450k

41. Liu, S., Zhu, Q., Guan, Q., He, L., & Li, W. (2015). Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource Technology, 183, 93–100. http://doi.org/10.1016/j.biortech.2015.02.056

42. Maher, K. D. D., & Bressler, D. C. C. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 98(12), 2351–68. http://doi. org/10.1016/j.biortech.2006.10.025

43. Maher, K. D., Kirkwood, K. M., Gray, M. R., & Bressler, D. C. (2008). Pyrolytic Decarboxylation and Cracking of Stearic Acid. Industrial & Engineering Chemistry Research, 47(15), 5328– 5336. http://doi.org/10.1021/ie0714551

44. Morgan, T., Grubb, D., Santillan-Jimenez, E., & Crocker, M. (2010). Conversion of Triglycerides to Hydrocarbons Over Supported Metal Catalysts. Topics in Catalysis, 53(11-12), 820–829. http://doi. org/10.1007/s11244-010-9456-1

45. Nam, L. T. H., Vinh, T. Q., Loan, N. T. T., Tho, V. D. S., Yang, X.-Y., & Su, B.-L. (2011). Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. Fuel, 90(3), 1069–1075. http://doi. org/10.1016/j.fuel.2010.10.060

46. Ong, Y. K., & Bhatia, S. (2010). The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils. Energy, 35(1), 111–119. http://doi.org/10.1016/j. energy.2009.09.001

47. Ooi, Y. S., Zakaria, R., Mohamed, A. R., & Bhatia, S. (2004). Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass and Bioenergy, 27(5), 477–484. http://doi.org/10.1016/j. biombioe.2004.03.003

48. Ooi, Y.-S., Zakaria, R., Mohamed, A. R., & Bhatia, S. (2004). Synthesis of composite material MCM41/Beta and its catalytic performance in waste used palm oil cracking. Applied Catalysis A: General, 274(1-2), 15–23. http://doi.org/10.1016/j. apcata.2004.05.011

49. Sadrameli, S. M., & Green, A. E. S. (2007). Systematics of renewable olefins from thermal cracking of canola oil. Journal of Analytical and Applied Pyrolysis, 78(2), 445–451. http://doi. org/10.1016/j.jaap.2006.12.010

50. Salvi, B. L., Subramanian, K. A., & Panwar, N. L. (2013). Alternative fuels for transportation vehicles: A technical review. Renewable and Sustainable Energy Reviews, 25, 404–419. http:// doi.org/10.1016/j.rser.2013.04.017

51. Sankaranarayanan, T. M., Banu, M., Pandurangan, a., & Sivasanker, S. (2011). Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-MoAl-zeolite beta composites. Bioresource Technology, 102(22), 10717–10723. http://doi.org/10.1016/j. biortech.2011.08.127

52. Satyarthi, J. K., Chiranjeevi, T., Gokak, D. T., & Viswanathan, P. S. (2013). An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catalysis Science & Technology, 3(1), 70. http://doi.org/10.1039/c2cy20415k

53. Shay, E. G. (1993). Diesel fuel from vegetable oils: status and opportunities. Biomass and Bioenergy, 4(4), 227–242. Retrieved from http://www.sciencedirect. com/science/article/pii/096195349390080N

54. Šimáček, P., & Kubička, D. (2010). Hydrocracking of petroleum vacuum distillate containing rapeseed oil: Evaluation of diesel fuel. Fuel, 89(7), 1508– 1513. http://doi.org/10.1016/j.fuel.2009.09.029

55. Šimáček, P., Kubička, D., Šebor, G., & Pospíšil, M. (2009). Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel, 88(3), 456–460. http://doi.org/10.1016/j.fuel.2008.10.022

56. Šimáček, P., Kubička, D., Šebor, G., & Pospíšil, M. (2010). Fuel properties of hydroprocessed rapeseed oil. Fuel, 89(3), 611–615. http://doi.org/10.1016/j. fuel.2009.09.017

57. Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Assabumrungrat, S. (2014). Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chemical Engineering Journal, 1–10. http:// doi.org/10.1016/j.cej.2014.09.106

58. Taufiqurrahmi, N., & Bhatia, S. (2011). Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy & Environmental Science, 4(4), 1087. http://doi.org/10.1039/ c0ee00460j

59. Templis, C., Vonortas, a., Sebos, I., & Papayannakos, N. (2011). Vegetable oil effect on gasoil HDS in their catalytic co-hydroprocessing. Applied Catalysis B: Environmental, 104(3-4), 324–329. http://doi. org/10.1016/j.apcatb.2011.03.012

60. Tiwari, R., Rana, B. S., Kumar, R., Verma, D., Kumar, R., Joshi, R. K., … Sinha, A. K. (2011). Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catalysis Communications, 12(6), 559– 562. http://doi.org/10.1016/j.catcom.2010.12.008

61. Twaiq, F. a., Mohamed, A. R., & Bhatia, S. (2003). Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous and Mesoporous Materials, 64(1-3), 95–107. http://doi. org/10.1016/j.micromeso.2003.06.001

62. Twaiq, F. a., Zabidi, N. a. M., & Bhatia, S. (1999). Catalytic Conversion of Palm Oil to Hydrocarbons: Performance of Various Zeolite Catalysts. Industrial & Engineering Chemistry Research, 38(9), 3230– 3237. http://doi.org/10.1021/ie980758f

63. Twaiq, F. a., Zabidi, N. A. M., Mohamed, A. R., & Bhatia, S. (2003). Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels. Fuel Processing Technology, 84(1-3), 105–120. http:// doi.org/10.1016/S0378-3820(03)00048-1

64. Veriansyah, B., Han, J. Y., Kim, S. K., Hong, S.-A., Kim, Y. J., Lim, J. S., … Kim, J. (2012). Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel, 94, 578–585. http://doi. org/10.1016/j.fuel.2011.10.057

65. Vonortas, A., Kubička, D., & Papayannakos, N. (2014). Catalytic co-hydroprocessing of gasoilpalm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst. Fuel, 116, 49–55. http://doi.org/10.1016/j. fuel.2013.07.074

66. Yan, S., DiMaggio, C., Wang, H., & Mohan, S. (2012). Catalytic Conversion of Triglycerides to Liquid Biofuels Through Transesterification, Cracking, and Hydrotreatment Processes. Current Catalyst, 1(1), 41–51. http://doi. org/10.2174/2211545511201010041

67. Yang, Y., Wang, Q., Zhang, X., Wang, L., & Li, G. (2013). Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2–Al2O3. Fuel Processing Technology, 116, 165–174. http://doi. org/10.1016/j.fuproc.2013.05.008

68. Zámostný, P., Bělohlav, Z., & Šmidrkal, J. (2012). Production of olefins via steam cracking of vegetable oils. Resources, Conservation and Recycling, 59, 47– 51. http://doi.org/10.1016/j.resconrec.2011.03.007

69. Zarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M. V., & Herskowitz, M. (2015). Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 139, 684–691. http://doi. org/10.1016/j.fuel.2014.09.053

70. Zhang, H., Lin, H., Wang, W., Zheng, Y., & Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150-151, 238–348. http://doi. org/10.1016/j.apcatb.2013.12.006

71. Zhang, Z., Yan, K., & Zhang, J. (2013). ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures. RSC Advances, 3(18), 6401. http://doi.org/10.1039/ c3ra22902e.