Vol. 15 No. 1 (2017): Fuentes, el reventón energético
Articles

Techniques for Steamflooding improvement

Alberto M. Pérez Venera
Universidad Industrial de Santander (UIS).
Bio
Maria Camila Ariza Tarazona
Universidad Industrial de Santander (UIS).
Bio
Astrid Xiomara Rodríguez Castelblanco
Universidad Industrial de Santander (UIS).
Bio
Samuel Fernando Muñoz Martínez
Universidad Industrial de Santander (UIS).
Bio

Published 2017-06-01

How to Cite

Pérez Venera, A. M., Ariza Tarazona, M. C., Rodríguez Castelblanco, A. X., & Muñoz Martínez, S. F. (2017). Techniques for Steamflooding improvement. Fuentes, El reventón energético, 15(1), 109–117. https://doi.org/10.18273/revfue.v15n1-2017010

Abstract

One of the main challenges in developing a process of continuous steam injection is to control the injection profile. Said profile is strongly affected by steam channeling to “thief zones” and the gravitational effect of override, both are characterized by preventing contact of the steam with reservoir zones containing considerable amounts of hydrocarbons thus decreasing the vertical sweep efficiency. These phenomena are favored by some features of the formation such as large thickness and reservoir heterogeneities and may affect the technical and economic feasibility of the project if they are not controlled and / or monitored properly.

Several methodologies have been designed to address this problem. Among them are injecting surfactants for the formation of in situ foam, which seeks to reduce the mobility of steam; using thermal gels, for plugging high permeability channels; injection of solvents, used to enhance oil mobility; and water-alternating-steam injection (WASP) for scavenging of both upper and lower zone of the formation. This article collects relevant aspects of the mentioned methods, and a comparison is made in base of the number of applications, incremental production and implementation cost.

Keywords: Steamflooding, In Situ Foams, Solvents, High Temperature Gels, Water Alternating Steam.

Downloads

Download data is not yet available.

References

  1. Ariza, M. C., Perez, A., Rodriguez, A. X., Munoz, S. F. (2016). Water Alternating Steam Process WASP Simulation Study in a Colombian Heavy Oil. In SPE Trinidad and Tobago Section Energy Resources Conference. Society of Petroleum Engineers.
  2. Bautista, L. S., Friedmann, F. (1994). Water-Alternating-Steam Process (WASP) Alleviates Downdip Steam Migration in Cymric Field. En SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers.
  3. Castellanos-Diaz, O., Verlaan, M.L. Hedden, R. (2016). Solvent Enhanced Steam Drive: Results from the First Field Pilot in Canada. In: SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers.
  4. De Ferrer, M. P. (2001). Inyección de agua y gas en yacimientos petrolíferos. Ediciones Astro Data SA, Maracaibo, Venezuela.
  5. Donaldson, E. C. (1989). Chilingarian, G. V.; Yen, T. F. (ed.). Enhanced oil recovery, II: Processes and operations. Elsevier.
  6. Farouq ALI, S. M., Meldau, R. F. (1979). Current steamflood technology. Journal of Petroleum Technology, vol. 31, no 10, p. 1,332-1,342.
  7. Farouq Ali, S. M., Snyder, S. G. (1973). Miscible thermal methods applied to a two-dimensional, vertical tar sand pack, with restricted fluid entry. Journal of Canadian Petroleum Technology, vol. 12, no 04.
  8. Felber, B. J., Dauben, D. L. (1977). Laboratory Development of Lignosulfonate Gels for Sweep Improvement. Society of Petroleum Engineers Journal, vol. 17, no 06, p. 391-397.
  9. Felber, B. J., Dauben, D. L. y Marrs, R. E. (1981). Method using lignosulfonates for hightemperature plugging. U.S. Patent No RE30, 767, 13 Oct. 1981.
  10. Ferguson, M. A., Mamora, D. D., y Goite, J. G. (2001). Steam-propane injection for production enhancement of heavy Morichal oil. En SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers.
  11. Gates, C. F. y Brewer, S.W. (1975). Steam Injection Into the D and E Zone, Tulare Formation, South Belridge Field, Kern County, California. Journal of Petroleum Technology. 27.03: 343-348.
  12. Greaser, G. R. y Shore, R.A. (1980). Steamflood Performance in the Kern River Field. In:SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers.
  13. Harding, T. G., Farouq, S. M. y Flock, D. L. (1983). Steamflood performance in the presence of carbon dioxide and nitrogen. Journal of Canadian Petroleum Technology, vol. 22, no 5, p. 30-37.
  14. Hejl, K. A., Friedmann, F. y Anderson, G. M. (1997). Coalinga Lignosulfonate Gel Trial. En International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers.
  15. Hong, K. C. y Steven S, D. E. (1992). Wateralternating-steam process improves project economics at West Coalinga field. SPE reservoir engineering, vol. 7, no 04, p. 407-413.
  16. Hunter, B. L., Buell, R. S. y Abate, T. A. (1992). Application of a polymer gel system to control steam breakthrough and channeling. En SPE Western Regional Meeting. Society of Petroleum Engineers.
  17. Larry W., Holstein, E. D. (2007). Petroleum Engineering Handbook, Volume V (B) Reservoir Engineering and Petrophysics. Society of Petroleum Engineers.
  18. Lau, H.C. Alkaline steam foam. (2012). Concepts and experimental results. SPE Reservoir Evaluation & Engineering, vol. 15, no 04, p. 445-452.
  19. Maini, B. B., MA, V. (1984). Relationship between foam stability measured in static tests and flow behavior of foams in porous media. En SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
  20. Moradi-Araghi, A. (2000). A review of thermally stable gels for fluid diversion in petroleum production. Journal of Petroleum Science and Engineering, 26.1: 1-10.
  21. Nasr-El-Din, H. A.; Taylor, K. C. (2005). Evaluation of sodium silicate/urea gels used for water shutoff treatments. Journal of Petroleum Science and Engineering, 48.3: 141-160.
  22. Patzek, T. W. (1996). Field applications of steam foam for mobility improvement and profile control. SPE Reservoir Engineering, 11.02: 79-86.
  23. Patzek, T. W., Koinis, M.T. (1990). Kern River steam-foam pilots. Journal of Petroleum Technology, 42.04: 496-503.
  24. Ploeg, J. F., Duerksen, J. H. (1985). Two successful steam/foam field tests, Sections 15A and 26C, Midway-Sunset field. SPE California Regional Meeting. Society of Petroleum Engineers.
  25. Ramkhalawan, C. D.; Khan, J.; Bainey, K. R. (1995). Thirty (30) years of steamflooding: Reservoir management and operational experiences. En Society of Petroleum Engineers. Annual technical conference. p. 739-746.
  26. Ramlal, V.; Singh, K. S. (2000). Success of Water-Alternating-Steam-Process for Heavy Oil Recovery at Petrotrin.
  27. Robin, M. (1987). Laboratory evaluation of foaming additives used to improve steam efficiency. En SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
  28. Sandoval, Y., Franco, L. (2010). Análisis de la implementación de la tecnología de espumas como método para aumentar el factor de recobro en campos petroleros. Universidad Industrial de Santander, Colombia.
  29. Sheng, James (ed.). (2013). Enhanced oil recovery field case studies. Gulf Professional Publishing.
  30. Shu, W. R., Hartman, K. J. (1998). Effect of solvent on steam recovery of heavy oil. SPE reservoir Engineering, vol. 3, no 02, p. 457-465.
  31. Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l’IFP, vol. 63, no 1, p. 9-19.