Experimental evaluation of the efficiency of a solar tube collector evacuated with and without heat pipe
Published 2019-06-30
Keywords
- solar energy,
- water heating system,
- solar evacuated tube collector,
- heat pipe,
- efficiency
How to Cite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This research study evaluated the efficiency of a solar evacuated tube collector (SETC) with and without a heat pipe on sunny, partially cloudy and cloudy days, experimentally. A total of 46 experiments were conducted during a period of 23 days: from March to June 2017 with two (SETC) with and without a heat pipe of 100 and 120 L, respectively. Solar radiation in the horizontal surface, and water temperature at the outlet of the storage tank were registered for 5 hours (9:30 a.m to 2:30 p.m) with intervals of 30 and 10 seconds, respectively. The Matlab programming language was used for representations and estimates of efficiency.
Results show a slight superiority in the efficiency of the SETC with a heat pipe of (60,35%, 61,21% and 66,08%) compared to the one without heat pipe (57,17%, 57,29%and 59,56%), measured on sunny, partially cloudy and cloudy days, respectively. It was observed that on cloudy days, the SETC with a heat pipe presented an increase in the efficiency as a result of lower heat losses due to a lower increase in temperature thus generating a greater use of incident solar energy.
The variance analysis indicated that the solar radiation and tube heat condition of the SETC do not influence significatively in the energy efficiency of this solar collector. According to the condition of solar radiation (sunny, partially cloudy and cloudy days), the SETC with a heat pipe presented a higher efficiency of 3.20%, 3.92%, and 6.52%, compared to the SETC without a heat pipe.
Downloads
References
2. Amaris, J. M., Manrique, D. A., & Jaramillo, J. E. (2015). Biocombustibles líquidos en Colombia y su impacto en motores de combustión interna. Una revisión. Revista Fuentes, 13(2), 23-34.
3. Ayala, F. E. B., Gómez, J. Q., & León, E. A. (2011). Estudio de factibilidad del uso del biodiesel como fase contínua en lodos de perforación de emulsión inversa. Revista Fuentes, 9(1).
4. Budihardjo, I., & Morrison, G. (2009). Performance of water-in-glass evacuated tube solar water heaters. Solar Energy, 83(1), 49–56. doi:10.1016/j.solener.2008.06.010
5. Conicet, I. (2009). Colectores solares para agua caliente. UNSA, Argentina.
6. Duffie, J., & Beckman, W. (2013). Solar engineering of thermal processes (Cuarta ed.). New Jersey, Canada: Wiley.
7. Forero, L. E. P., Castro, Z. S., Bernal, H. R. G., & Ávila, H. S. R. (2012). Hornillas paneleras Ward-Cimpa: validación de los modelos matemáticos de diseño Corpoica-UIS. Revista Fuentes, 10(2).
8. Hamed, M., Fellah, A., & Ben Brahim, A. (2014). Parametric sensitivity studies on the performance of a flat plate solar collector in transient behavior. Energy Conversion and Management, 78, 938–947. doi:http://dx.doi.
org/10.1016/j.enconman.2013.09.044
Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55-63. doi:http://dx.doi.org/10.1016/j.
renene.2012.10.031
10. Jesko, Z. (2008). Classification of solar collectors.
Engineering for Rural Development, 22-27. 11. Kumar, A., & Chandel, S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. Renewable and Sustainable Energy Reviews, 23, 503–513. doi:http://
dx.doi.org/10.1016/j.rser.2013.02.027
12. Larrea, G., & Bayas, H. (2011). Diseño de un sistema solar térmico para la producción de quesos en las comunidades: Chimborazo,
Santa Isabel - Ecuador.
13. Loayza, F. (2012). Diseño e implementación de un
seguidor solar para el control electrónico de
un reflector Scheffler. Tesis título, Lima.
14. Martinez, J. C., Franco, P., & Alonso, R. (2013). Manual termico de energía solar térmica.
Uruguay.
15. Menjura, O. A. M., Tayo, J. L. N., Melo, E. R.
V., Guerrero, A. C., & Bernal, H. R. G. (2011). Ahorro de combustible y energía en horno s usados para la elaboración de panela modificando el diseño de pailas abiertas. Revista fuentes, 9(2).
16. Park, S., Pandey, A., Tyagi, V., & Tyagi, S. (2014). Energy and exergy analysis of typical renewable energy systems. Renewable and Sustainable Energy Reviews, 30, 105–123. doi:http:// dx.doi.org/10.1016/j.rser.2013.09.011
17. Salcedo, C. (2011). Influencia del estudio de la tecnología de vacío en tubos sobre la eficiencia para el calentamiento de agua usando la energía solar. Tesis de grado, Universidad Técnica de Ambato.
18. Skeiker, K. (2009). Optimum tilt angle and orientation for solar collectors in Syria. Revista Energy Conversion and Management, 50, 2439 – 2448. doi:10.1016/j.enconman.2009.05.031
19. Tagliafico, L., Scarpa, F., & De Rosa, M. (2014). Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review. Renewable and Sustainable Energy Reviews, 30, 526–537. doi:http://dx.doi.org/10.1016/j. rser.2013.10.023
20. Taherian, H., Rezania, A., Sadeghi, S., & Ganji, D. (2011). Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater. Energy Conversion and Management, 52, 301–307. doi:10.1016/j.enconman.2010.06.063
21.Vidal,E.,&Fontalvo,C.(2018).Alternativapara la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología “Power to Gas” en Colombia. Revista Fuentes, 16(1), 71-79.
22. Zima, W., & Dziewa, P. (2010). Mathematical modelling of heat transfer in liquid flat- plate solar collector tubes. Archives of Thermodynamics, 31(2), 45-62.