Revista Integración, temas de matemáticas.
Vol. 26 Núm. 2 (2008): Revista Integración, temas de matemáticas
Artículos científicos

A note about isothermic surfaces in Rn−j,j

M P Dussan
Universidade de São Paulo, São Paulo-SP, Brasil. Departamento de Matemática
Biografía
M A Magid
Wellesley College, Wellesley, USA. Department of Mathematics
Biografía

Publicado 2009-08-31

Palabras clave

  • Dressing actions,
  • Grassmannian systems,
  • Lorentzian isothemic surfaces

Cómo citar

Dussan, M. P., & Magid, M. A. (2009). A note about isothermic surfaces in Rn−j,j. Revista Integración, Temas De matemáticas, 26(2), 61–76. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/175

Resumen

In this note we survey our results on the description of ti-melike isothermic surfaces in Rn-j,j using the Grassmannian systems or U/K-systems. We give the natural extensions of the definition of Ribaucour and Darboux transformations for timelike isothermic surfaces and review how those transformations correspond to dressing actions of suitable simple elements. 

 

 

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] A.I. Bobenko, “Surfaces in terms of 2 by 2 matrices, old and new integrable cases”,Harmonic maps and Integrable systems, Edited by A.P. Fordy and J. Wood, (1994),83-127. Vieweg.

[2] M. Bruck, X. Du, J. Park, C-L. Terng, “The Submanifolds Geometries associatedto Grassmannian Systems”, Memoirs of A.M.S. 735 (2002).

[3] F. Burstall, “Isothermic surfaces: conformall geometry, Clifford algebras and Integrable systems”, Preprint, math-dg/0003096.

[4] F. Burstall, U. Hertrich-Jeromin, F. Pedit, U. Pinkall, “Curved flats and isothermic surfaces”, Math. Z. no. 2, 225 (1997).

[5] J. Ciesliski, P. Goldstein, A. Sym, “Isothermic surfaces in E3 as soliton surfaces”, Phys. Lett. A 205 (1995), 37-43.

[6] J. Ciesliski, “The Darboux-Bianchi transformation for isothermic surfaces”, Differential Geom. Appl. 7 (1997), 1-28.

[7] M. Dajczer, R. Tojeiro, “Commuting Codazzi tensors and the Ribaucour transformation
for submanifolds”, Results in Math. 44, (2003), 258-278.

[8] M.P. Dussan, M.A. Magid, “Timelike isothermic surfaces associated to Grassmannian systems”, Doc. Math. 10, (2005), 527-549.

[9] M.P. Dussan, M.A. Magid, “Complex Timelike isothermic surfaces and their Geometric transformations”, Balkan J. Geom. Appl. 11, (2006), no. 1, 39-53.

[10] A. Fujioka, J. Inoguchi, “Spacelike surfaces and Harmonic Inverse Mean curvature”, J. Math. Sci. Univ. Tokyo. 7, (2000). 657-698.

[11] U. Hertrich-Jeromin, F. Pedit, “Remarks on the Darboux transform of isothermic surfaces”, Doc. Math. 2, (1997), 313-333.

[12] M.A. Magid, “Lorenztian Isothermic surfaces in Rn-j ”, Rocky Mountain J.M. 35, (2005), 627-640.

[13] A. Pressley, G.B. Segal, Loop Groups. Oxford Science Publ. Clarendon Press, Oxford. (1986).

[14] C.L. Terng, “Soliton equations and Differential Geometry”, J. Differential Geom. 45, (1997), no. 2. 407-445.

[15] C.L. Terng, K. Uhlenbeck, “Backlund transformations and loop group actions”, Comm. Pure Appl. Math. 53, (2000), 1-75.

[16] C. Tian, “Bäcklund transformation on surfaces with K = −1 in R2,1”, J. of Geom. and Phys. 22 (1997), 212-218.

[17] D. Zuo, Q. Chen, Y. Cheng, “Gp,qm,n-System II and diagonalizable timelike immersions in Rp,m ”, Inverse Problems, 20 (2004), 319-329.