Revista Integración, temas de matemáticas.
Vol. 28 Núm. 2 (2010): Revista Integración, temas de matemáticas
Artículos científicos

Soluciones positivas y soluciones con frontera libre para ecuaciones singulares

Juan Dávila
Universidad de Chile
Marcelo Montenegro
Universidade Estadual de Campinas

Publicado 2010-09-21

Palabras clave

  • Ecuaciones singulares,
  • frontera libre

Cómo citar

Dávila, J., & Montenegro, M. (2010). Soluciones positivas y soluciones con frontera libre para ecuaciones singulares. Revista Integración, Temas De matemáticas, 28(2), 85–100. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2169

Resumen

La ecuación −∆u = χ{u>0} (− 1/(u^β) + λf(x, u) en ∂Ω con condición de frontera de tipo Dirichlet en ∂Ω posee una solución uλ ≥ 0 para λ > 0. Si λ es menor que una constante λ ∗ la solución es nula dentro de una región del dominio, y para λ > λ∗ la solución es positiva y estable. Obtenemos la regularidad óptima de uλ aun con la frontera libre. Si 0 < λ < λ∗ las soluciones de la ecuación parabólica singular ut − ∆u + 1/(u^β) = λf(u) son nulas en tiempo finito, y para λ > λ∗ las soluciones son positivas y globalmente definidas. Palabras claves: Ecuaciones singulares, frontera libre.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Aris R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford University press, England, 1975.

[2] Brezis H., Cazenave T., Martel Y., and Ramiandrisoa A., “Blow-up for ut − ∆u = g(u) revisited”, Adv. Differential Equations, 1 (1996), 73–90.

[3] Brezis H. and Marcus M., “Hardy’s inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 217–237.

4] Choi Y.S., Lazer A.C., and McKenna P.J., “Some remarks on a singular elliptic boundary value problem”, Nonlinear Anal., 32 (1998), 305–314.

[5] Crandall M.G., Rabinowitz P.H and Tartar L., “On a Dirichlet problem with a singular nonlinearity”, Comm. Partial Differential Equations, 2 (1977), 193–222.

[6] Dávila J. and Montenegro M., “Radial solutions of an elliptic equation with singular nonlinearity”, J. Math. Anal. Appl., 352 (2009), 360–379.

[7] Dávila J., “Global regularity for a singular equation and local H1 minimizers of a nondifferentiable
functional”, Commun. Contemp. Math., 6 (2004), 165–193.

[8] Dávila J. and Montenegro M., “Existence and asymptotic behavior for a singular parabolic equation”, Trans. Amer. Math. Soc., 357 (2005), 1801–1828.

[9] Dávila J. and Montenegro M., “Concentration for an elliptic equation with singular nonlinearity”, to appear in J. Math. Pures Appl., (2011), doi:10.1016/j.matpur.2011.02.001

[10] Díaz J.I., Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Research Notes in Mathematics, 106. Pitman (Advanced Publishing Program), Boston, MA, 1985.

[11] Díaz J.I., Morel J.M., and Oswald L., “An elliptic equation with singular nonlinearity”, Comm. Partial Differential Equations, 12 (1987), 1333–1344.

[12] Giaquinta M. and Giusti E., “Sharp estimates for the derivatives of local minima of variational integrals”, Boll. Un. Mat. Ital. A, 3 (1984), 239–248.

[13] Gui C. and Lin F.H., “Regularity of an elliptic problem with a singular nonlinearity”, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 1021–1029.

[14] Martel Y., “Uniqueness of weak extremal solutions of nonlinear elliptic problems”, Houston J. Math., 23 (1997), 161–168.

[15] Mignot F. and Puel J.P., “Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe”, Comm. Partial Differential Equations, 5 (1980), 791–836.

[16] Montenegro M. and Queiroz O., “Existence and regularity to an elliptic equation with logarithmic nonlinearity”, J. Differential Equations, 246 (2009), 482–511.

[17] Phillips D., “A minimization problem and the regularity of solutions in the presence of a free boundary”, Indiana Univ. Math. J., 32 (1983), 1–17.

[18] Shi J. and Yao M., “On a singular nonlinear semilinear elliptic problem”, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1389–1401.