Revista Integración, temas de matemáticas.
Vol. 30 Núm. 1 (2012): Revista Integración, temas de matemáticas
Artículo Original

Dinámica colectiva

Hector Mendez Lango
UNAM, Facultad de Ciencias, Departamento de Matemáticas, Ciudad Universitaria, C.P. 04510, D.F., México

Publicado 2012-08-21

Palabras clave

  • Hiperespacio,
  • dinámica discreta,
  • dinámica colectiva,
  • entropía

Cómo citar

Mendez Lango, H. (2012). Dinámica colectiva. Revista Integración, Temas De matemáticas, 30(1), 25–41. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2700

Resumen

Dado un espacio métrico compacto Xy una función continua f: X→X, consideramos el hiperespacio de todos los subconjuntos de X que son cerrados y no vacíos,2X, con la métrica de Hausdorff, y la función que induce f en él, ˆf:2 X→2 X. En la última década ha habido una importante cantidad de artículos estudiando las relaciones entre las propiedades dinámicas de fy las de ˆf. En este trabajo presentamos un panorama con varios de los resultados más importantes. Ofrecemos, además, una breve colección de varias de las conjeturas y preguntas abiertas que se han planteado en esta área.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Acosta G., Illanes A. and Méndez-Lango H., “The transitivity of induced maps”, Topology Appl. 156 (2009), no. 5, 1013–1033.
  2. Adler R.L., Konheim A.G. and McAndrew M.H., “Topological entropy”, Trans. Amer. Math. Soc. 114 (1965), 309–319.
  3. Alseda L., Llibre J. and Misiurewicz M., Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., River Edge, NJ, 1993.
  4. Arenas G., Isaacs R., Méndez H. y Sabogal S., Sistemas dinámicos discretos y fractales, Vínculos Matemáticos, 87, Departamento de Matemáticas, Facultad de Ciencias, UNAM, México, 2009.
  5. Banks J., “Topological mapping properties defined by digraphs”, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 83–92.
  6. Banks J., “Chaos for induced hyperspace maps”, Chaos Solitons Fractals 25 (2005), no. 3, 1581–1583.
  7. Bauer W. and Sigmund K., “Topological dynamics of transformations induced on the space of probability measures”, Monatsh. Math. 79 (1975), 81–92.
  8. Block L.S. and Coppel W.A., “Dynamics in one dimension”, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.
  9. Devaney R.L., An introduction to chaotic dynamical systems, Second Edition, AddisonWesley Studies in Nonlinearity, Redwood City, CA, 1989.
  10. García J.L., Kwietniak D., Lampart M., Oprocha P. and Peris A., “Chaos on hyperspaces”, Nonlinear Anal. 71 (2009), no. 1-2, 1–8.
  11. Gengrong Z., Fanping Z. and Xinhe L., “Devaney’s chaotic on induced maps of hyperspace”, Chaos Solitons Fractals 27 (2006), no. 2, 471–475.
  12. Hernández P., Navegando en el hiperespacio, Tesis de Maestra en Ciencias (Matemáticas), UNAM, México, (2011).
  13. Hernández P., King J. and Méndez-Lango H., “Compact sets with dense orbit in 2X”, Topology Proc. 40 (2012), 319–330.
  14. Hocking J.G. and Young G.S., Topology, Dover Publications, New York, 1996.
  15. Illanes A., “Modelos de hiperespacios”, capítulo contenido en Invitación a la Teoría de los Continuos y sus Hiperespacios, Escobedo R., Macías S. y Méndez-Lango H., eds., Aportaciones Mat. Textos, 31, Soc. Mat. Mexicana, México, 2006.
  16. Illanes A. and Nadler S.B., Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216. Marcel Dekker, Inc., New York, 1999.
  17. Kwietniak D. and Oprocha P., “Topological entropy and chaos for maps induced on hyperspaces”, Chaos Solitons Fractals 33 (2007), no. 1, 76–86.
  18. Lampart M. and Raith P., “Topological entropy for set-valued maps”, Nonlinear Anal. 73 (2010), no. 6, 1533–1537.
  19. Liao G., Wang L. and Zhang Y., “Transitivity, mixing and chaos for a class of set-valued mappings”, Sci. China Ser. A 49 (2006), no. 1, 1–8.
  20. Méndez-Lango H., “The process of finding f′ for an entire function f has infinite topological entropy”, Topology Proc. 28 (2004), no. 2, 639–646.
  21. Méndez-Lango H., “On density of periodic points for induced hyperspace maps”, Topology Proc. 35 (2010), 281–290.
  22. Nadler S.B., Jr. Dimension theory: An introduction with exercises, Aportaciones Mat. Textos, 18, Soc. Mat. Mexicana, México, 2002.
  23. Roman-Flores H., “A note on transitivity in set valued discrete systems”, Chaos Solitons Fractals 17 (2003), no. 1, 99–104.
  24. Schori R.M. and West J.E., “The hyperspace of the closed unit interval is a Hilbert Cube”, Trans. Amer. Math. Soc. 213 (1975), 217–235.
  25. Sharma P. and Nagar A., “Inducing sensitivity on hyperspaces”, Topology Appl. 157 (2010), no. 13, 2052–2058.
  26. Walters P., An introduction to ergodic theory, Grad. Texts in Math., 79, Springer Verlag, New York, 1982.
  27. Wang Y., Wei G. and Campbell W.H., “Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems”, Topology Appl. 156 (2009), no. 4, 803–811.