Artículos científicos
Publicado 2012-08-21
Palabras clave
- inclusiones diferenciales difusas,
- técnicas de aproximación,
- con-juntos alcanzables difusos
Cómo citar
González Calderón, W. (2012). Una aproximación a los conjuntos alcanzables de una inclusión diferencial difusa. Revista Integración, Temas De matemáticas, 30(1), 57–74. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2702
Resumen
Se estudian los sistemas dinámicos difusos a partir de la noción de inclusión diferencial difusa introducida en [24]. Se analizan algunas técnicas utilizadas para resolver inclusiones diferenciales difusas asociadas a problemas de valor inicial, y se introduce una nueva forma de aproximación a los conjuntos alcanzables difusos, la cual permite resolver de manera más natural una inclusión diferencial difusa.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
- Abbasbandy S., Nieto J.J. and Alavic M., “Tuning of reachable set in one dimensional fuzzy differential inclusions”, Chaos Solitions Fractals 26 (2005), no. 5, 1337–1341.
- Aubin J.P., “Fuzzy differential inclusions”, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 19 (1990), no. 1, 55–67.
- Aubin J.P. and Cellina A., Differential inclusions. Set-valued maps and viability theory, Springer-Verlag, Berlin, 1984.
- Aubin J.P. and Frankowska H., Set-Valued Analysis, Birkhäuser Boston, Inc., Boston, MA, 1990.
- Baidosov V.A., “Differential inclusions with fuzzy right-hand side”, Soviet Math. Dokl. 40 (1990), no. 3, 567–569.
- Baidosov V.A., “Fuzzy differential inclusions”, J. Appl. Math. Mech. 54 (1990), no. 1, 8–13.
- Barros L.C., Bassanezi R.C. and de Oliveira R.Z.G., “Epidemiological Models with Fuzzy Differential Inclusion”, Proceedings of the Third Brazilian Symposium on Mathematical and
- Computational Biology, vol. II, R. Mondaini (editor), E-Papers Serviços Editoriais, Ltda.,Rio de Janeiro, (2004).
- Bede B. and Gal S.G., “Almost periodic fuzzy-number-valued functions”, Fuzzy Sets and System 147 (2004), no. 3, 385–403.
- Bede B. and Gal S.G., “Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations”, Fuzzy Sets and Systems 151 (2005), no. 3, 581–599.
- Bencsik A., Bede B., Tar J. and Fodor J., Fuzzy differential equations in modeling hydraulic differential servo cylinders, Third Romanian-Hungarian joint symposium on applied computational
- intelligence (SACI), Timisoara, Romania, 2006.
- Bothe D., “Multivalued differential equations on graphs”, Nonlinear Anal. 18 (1992), no. 3, 245–252.
- Cellina A., “Approximation of set valued functions and fixed point theorems”, Ann. Mat. Pura Appl. 4 (1969), no. 82, 17–24.
- Chalco-Cano Y. and Román-Flores H., “Comparation between some approaches to solve fuzzy differential equations”, Fuzzy Sets and Systems 160 (2009), no. 11, 1517–1527.
- Chalco-Cano Y., Rojas-Medar M.A. and Román-Flores H., “Fuzzy differential equations with generalized derivate”, Proc. 27 th NAFIPS Internat. Conf. IEEE, (2008).
- Chalco-Cano Y., Rojas-Medar M.A. and Román-Flores H., “Sobre ecuaciones diferenciales difusas”, Bol. Soc. Esp. Mat. Apl. S�eMA 41 (2007), 91–99.
- Chen M., Li D. and Xue X., “Periodic problems of first order uncertain dynamical systems”,Fuzzy Sets and Systems 162 (2011), 67–78.
- Diamond P., “Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations”, IEEE Trans. Fuzzy System 7 (1999), no. 6, 734–740.
- Diamond P., “Stability and periodicity in fuzzy differential equations”, IEEE Trans. Fuzzy System 8 (2000), no. 8, 583–590.
- Diamond P. and Watson P., “Regularity of solution sets for differential inclusions quasiconcave in a parameter”, Appl. Math. Lett. 13 (2000), no. 1, 31–35.
- Fernández-Cara E., Rojas-Medar M.A. y Brandão A.J.V., “Inclusiones Diferenciales, Matemática Difusa y Aplicaciones”, Bol. Soc. Esp. Mat. Apl. SeMA 24 (2003), 31–62.
- Guo M. and Li R., “Impulsive functional differential inclusions and fuzzy populations models”, Fuzzy Sets and Systems 138 (2003), no. 3, 601–615.
- Guo M., Xue X. and Li R., “The oscillation of delay differential inclusions and fuzzy biodynamics models”, Math. Comput. Modelling 37 (2003), no. 7-8, 651–658.
- Hüllermeier E., A fuzzy simulation method, International Symposium on Soft Computing, 1996.
- Hüllermeier E., “An approach to modeling and simulation of uncertain dynamical systems”,International Journal of Uncertainty, Fuziness and Knowledge-Bases Systems 5 (1997), no. 2, 117–137.
- Hüllermeier E., “Numerical methods for fuzzy initial value problems”, International Journal of Uncertainty, Fuziness and Knowledge-Bases Systems 7 (1999), no. 5, 439-461.
- Kaleva O., “Fuzzy differential equations”, Fuzzy Sets and Systems 24 (1987), no. 3, 301–317.
- Kaleva O., “A note on fuzzy differential equations”, Nonlinear Anal. 64 (2006), no. 5, 895-900.
- Kaleva O., “The Cauchy problem for fuzzy differential equations”, Fuzzy Sets and Systems 35 (1990), no. 3, 389–396.
- Kandel A. and Byatt W.J., “Fuzzy differential equations”, Proceedings of the International Conference on Cybernetics and Society, Tokyo, November 1978, 1213–1216.
- Kisielewicz M., Differential inclusions and optimal control, Mathematics and its Applications (East European Series), Warsaw, 1991.
- Kloeden P.E., “Remarks on peano-like theorems for fuzzy differential equations”, Fuzzy Sets and Systems 44 (1991), no. 1, 161–163.
- Colombo G., “A non-stochastic approach for modelling uncertainty in population dinamic”, Bull. Math. Biology 60 (1998), 721–751.
- Majumdar K.K., “A fuzzy dynamical system modelling of a disturbance leading to cyclogenesis”, Journal of Intelligent and Fuzzy Systems 13 (2002), 7–15.
- Majumdar K.K. and Majumder D.D., “Fuzzy differential inclusions in atmospheric and medical cybernetics”, IEEE Transactions on Systems, Man, and Cybernetics, Part-B: Cybernetics
- (2004), no. 2, 877–887.
- Nieto J.J. and Rodriguez-López R., “Bounded solutions for fuzzy differential and integral equations”, Chaos Solitons Fractals 27 (2006), no. 5, 1376–1386.
- Nieto J.J., “The Cauchy problem for continuous fuzzy differential equations”, Fuzzy Sets and Systems 102 (1999), no. 2, 259–262.
- Oberguggenberger M. and Pittschmann S., “Differential equations with fuzzy parameters”, Mathematical and Computer Modelling of Dynamical Systems 5 (1999), no. 3, 181–202.
- Puri M.L. and Ralescu D.A., “Differential and fuzzy functions”, J. Math. Anal. Appl. 91 (1983), no. 2, 552–558.
- Puri M.L. and Ralescu D.A., “Fuzzy random variables”, J. Math. Anal. Appl. 114 (1986), no. 2, 409–422.
- Rojas-Medar M.A., Notas de Análisis Fuzzy Multívoco, Universidad Estadual de Campinas, 2003.
- Seikkala S., “On the fuzzy initial value problem”, Fuzzy Sets and Systems 24 (1987), no. 3,
- –330.
- Song S. and Wu C., “Existence and uniqueness of solutions to Cauchy problem of fuzzy diferential equations”, Fuzzy Sets and Systems 110 (2000), no. 1, 55–67.
- Villamizar-Roa E.J. and González-Calderón W., “A note on the Cauchy problem of fuzzy differential equations”, Rev. Acad. Colombiana Cienc. Exact. Fís. Natur. 34 (2010), no. 133, 541–552.
- Zhu Y. and Rao L., “Differential inclusions for fuzzy maps”, Fuzzy Sets and Systems 112(2000), no. 2, 257–261.