Artículos científicos
Publicado 2013-07-29
Palabras clave
- Ecuación de Lax,
- jerarquía Brockett,
- sistema completamente integrable
Cómo citar
Felipe, R., & López Reyes, N. (2013). Integrabilidad de un sistema con doble conmutador. Revista Integración, Temas De matemáticas, 31(1), 15–23. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/3379
Resumen
Se utiliza un enfoque algebraico basado en la descomposión de grupos para mostrar la integrabilidad de un sistema de infinitas ecuacionesde Lax con doble corchete.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1] Benítez-Babilonia L., Felipe R. and López N., “Algebraic analysis of a discrete hierarchy of double bracket equations”, Differ. Equ. Dyn. Syst. 17 (2009), no. 1-2, 77–90.
[2] Bloch A.M., Brockett R.W., and Ratius T.S., “Completely integrable gradient flows”, Comm. Math. Phys. 147 (1992), 57–74.
[3] Cassidy Ph.J. and Singer M.F., “A Jordan-Holder Theorem for differential algebraic groups”, J. Algebra 328 (2011), 190–217.
[4] Dickey L.A., Soliton equations and Hamiltonian systems. Advanced Series in Mathematical Physics, 12, New Jersey, 1991.
[5] Felipe R., “Algebraic aspects of Brockett type equations”, Phys. D 132 (1999), no. 3, 287– 297.
[6] Felipe R. and Ongay F., “Super Brockett Equations: A Graded Gradient Integrable System”, Comm. Math. Phys. 220 (2001), no. 1, 95–104.
[7] Felipe R. and Ongay F., “Algebraic aspects of the discrete KP hierarchy”, Linear Algebra Appl. 338 (2001), 1–17.
[8] Kolchin E.R., Differential Algebra and Algebraic Groups. Academic Press, New York, 1976.
[9] Mulase M., “Complete integrability of the Kadomtsev-Petviashvili equation”, Adv. in Math. 54 (1984), no. 1, 57–66.
[10] Mulase M., “Algebraic theory of the KP equations,” Perspective in Mathematical Physics (ed. Penner R. and Yau S.T.), Cambridge, (1994).
[11] Schiff J., “The Camassa-Holm Equation: A Loop group approach”, Phys. D 121 (1998), no. 1-2, 24–43.
[12] Tsarev S.P., “Factorization of linear differential operators and systems”, Algebraic Theory of Differential Equations, in London Math. Soc. Lecture Note Ser. 357, Cambridge Univ. Press, Cambridge, (2009) 111–131.
[13] Semenov-Tian-Shansky M.A., Integrable Systems and Factorization Problems, Oper. Theory Adv. Appl. 141, Birkhäuser, Basel, 2003.
[14] Tam T-Y., “Gradiente flows and double bracket equations”, Differential Geom. Appl. 20 (2004), no. 2, 209–224
[2] Bloch A.M., Brockett R.W., and Ratius T.S., “Completely integrable gradient flows”, Comm. Math. Phys. 147 (1992), 57–74.
[3] Cassidy Ph.J. and Singer M.F., “A Jordan-Holder Theorem for differential algebraic groups”, J. Algebra 328 (2011), 190–217.
[4] Dickey L.A., Soliton equations and Hamiltonian systems. Advanced Series in Mathematical Physics, 12, New Jersey, 1991.
[5] Felipe R., “Algebraic aspects of Brockett type equations”, Phys. D 132 (1999), no. 3, 287– 297.
[6] Felipe R. and Ongay F., “Super Brockett Equations: A Graded Gradient Integrable System”, Comm. Math. Phys. 220 (2001), no. 1, 95–104.
[7] Felipe R. and Ongay F., “Algebraic aspects of the discrete KP hierarchy”, Linear Algebra Appl. 338 (2001), 1–17.
[8] Kolchin E.R., Differential Algebra and Algebraic Groups. Academic Press, New York, 1976.
[9] Mulase M., “Complete integrability of the Kadomtsev-Petviashvili equation”, Adv. in Math. 54 (1984), no. 1, 57–66.
[10] Mulase M., “Algebraic theory of the KP equations,” Perspective in Mathematical Physics (ed. Penner R. and Yau S.T.), Cambridge, (1994).
[11] Schiff J., “The Camassa-Holm Equation: A Loop group approach”, Phys. D 121 (1998), no. 1-2, 24–43.
[12] Tsarev S.P., “Factorization of linear differential operators and systems”, Algebraic Theory of Differential Equations, in London Math. Soc. Lecture Note Ser. 357, Cambridge Univ. Press, Cambridge, (2009) 111–131.
[13] Semenov-Tian-Shansky M.A., Integrable Systems and Factorization Problems, Oper. Theory Adv. Appl. 141, Birkhäuser, Basel, 2003.
[14] Tam T-Y., “Gradiente flows and double bracket equations”, Differential Geom. Appl. 20 (2004), no. 2, 209–224