Revista Integración, temas de matemáticas.
Vol. 31 Núm. 2 (2013): Revista Integración, temas de matemáticas
Artículos científicos

Sobre automorfismos de códigos extremales de tipo II

Ismael Gutiérrez García
Universidad del Norte
Darwin Villar Salinas
RWTH-Aachen University

Publicado 2013-12-17

Palabras clave

  • Códigos binarios,
  • códigos auto-duales,
  • códigos doblemente pares,
  • códigos extremales,
  • automorfismos de códigos

Cómo citar

Gutiérrez García, I., & Villar Salinas, D. (2013). Sobre automorfismos de códigos extremales de tipo II. Revista Integración, Temas De matemáticas, 31(2), 107–120. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/3750

Resumen

En el presente artículo se muestran algunas técnicas para obtener tipos de automorfismos de los códigos binarios auto-duales, doblemente pares y extremales, también denominados extremales de tipo II, con parámetros [24, 12, 8], [48, 24, 12] y [120, 60, 24]. El objetivo central es obtener información sobre el correspondiente grupo de automorfismos a partir de la exclusión de algunos números primos de su orden

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Assmus E. Jr., Mattson H. Jr., and Turyn R., “Research to develop the algebraic theory of codes”, Air force Cambridge Res. Lab., Bedford, MA, Report AFCRL-67-0365 (1967).
  2. Borello M., “The automorphism group of a self-dual [72, 36, 16] binary code does not contain elements of order 6”, IEEE Trans. Inform. Theory 58 (2012), no. 12, 7240–7245.
  3. Borello M. and Willems W., “Automorphism of order 2p in binary self-dual extremal codes of length a multiple of 24”, IEEE Trans. Inform. Theory 59 (2013), no. 6, 3378–3383.
  4. Borello M., Dalla Volta F. and Nebe G., “The automorphism group of a self-dual [72, 36, 16] code does not contain S3, A4 or D8”, arXiv:1303.4899
  5. Bouyuklieva S., De la Cruz J. and Willems W., “On the automorphism group of a binary self-dual [120, 60, 24] code”, Appl. Algebra Engrg. Comput. 24 (2013), no. 3-4, 201–214.
  6. Bouyuklieva S., O’Brien E. and Willems W., “The automorphism group of a binary selfdual doubly-even [72, 36, 16] code is solvable”, IEEE Trans. Inform. Theory 52 (2006), no. 2, 4244–4248.
  7. De la Cruz J. and Willems W., “On extremal self-dual codes of Length 96”, IEEE Trans. Inform. Theory 57 (2011), no. 10, 6820–6823.
  8. Dontcheva R., “On the doubly-even self-dual codes of length 96”, IEEE Trans. Inform. Theory 48 (2002), no. 7, 557–560.
  9. Gleason A.M., “Weight polynomials of self-dual codes and the MacWilliams identities”, 1970 Actes du Congrès International des Mathématiciens, vol 3 (1971), 211–215.
  10. Huffman W.C., “Automorphisms of codes with applications to extremal doubly even codes of length 48”, IEEE Trans. Inform. Theory 28 (1982), 511–521.
  11. Leon J.S, Masley J.M. and Pless V., “Duadic codes”, IEEE Trans. Inform. Theory 30 (1984), 709–714.
  12. MacWilliams F.J. and Sloane N.J.A., The theory of error-correcting codes, North-Holland, Mathematical Library Amsterdam, 1977.
  13. MacWilliams F., Odluzko A., Sloane N. and Ward H., “Self-dual codes over GF(4)”, Journal of Combinatorial Theory 25A (1978), 288–318.
  14. Mallows C., and Sloane N., “An upper bound for self-dual codes”, Information and Control 22 (1973), 188–200.
  15. O’Brien E. and Willems W., “On the automorphism group of a binary self-dual doubly even [72, 36, 16] code”, IEEE Trans. Inform. Theory 57 (2011), no. 7, 4445–4451.
  16. Rains E., “Shadow bounds for self-dual codes”, IEEE Trans. Inform. Theory 44 (1998), 134–139.
  17. Sloane N., “Is there a (72; 36) d = 16 self-dual code?”, IEEE Trans. Inform. Theory IT-19 (1973), no. 2, 251–251.
  18. Yorgov V.Y. and Huffman W.C., “A [72, 36, 16] doubly even code does not have an automorphism of order 11”, IEEE Trans. Inform. Theory 33 (1987), no. 5, 749–752.
  19. Zhang S., “On the nonexsitence of extremal self-dual codes”, Discrete Appl. Math. 91 (1999), no. 1-3, 277–286.