Revista Integración, temas de matemáticas.
Vol. 22 Núm. 1 y 2 (2004): Revista Integración, temas de matemáticas
Artículos científicos

Minimal hypersurfaces in Rn as regular values of a function

Óscar Mario Perdomo
Universidad del Valle
Biografía

Publicado 2004-09-16

Palabras clave

  • minimal hypersurfaces in Rn,
  • Clifford minimal hypersurface

Cómo citar

Perdomo, Óscar M. (2004). Minimal hypersurfaces in Rn as regular values of a function. Revista Integración, Temas De matemáticas, 22(1 y 2), 1–6. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/481

Resumen

In this paper we prove that if M = /_1(0) is a minimal hypersurface of Rn, where / : V C Rn -► R is a smooth function defined on a open set V, then / must satisfy the equation |V/|2A/ = |(V|V/|2,V/} for every x M. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface. 

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1]Manfredo P. Do Carmo.Riemannian Geometry, Birkhäuser, 1992.