Revista Integración, temas de matemáticas.
Vol. 33 Núm. 2 (2015): Revista Integración, temas de matemáticas
Artículo Original

Números Tribonacci, S-unidades y triplas diofánticas

Carlos Alexis Gómez Ruiz
Universidad del Valle

Publicado 2015-12-04

Palabras clave

  • Números Tribonacci,
  • triplas diofánticas,
  • formas lineales en logaritmos de números algebraicos

Cómo citar

Gómez Ruiz, C. A. (2015). Números Tribonacci, S-unidades y triplas diofánticas. Revista integración, Temas De matemáticas, 33(2), 121–133. https://doi.org/10.18273/revint.v33n2-2015003

Resumen

La sucesión Tribonacci T := {Tn}n≥0 tiene valores iniciales T0 = T1 =0,T2 =1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto finito S de primos. Particularmente, mostramos que cualquier par de miembros de la tripla diofántica {9, 56, 103} asociada a T +1, no se puede extender a otra tripla diofántica asociada a T +1.

Para citar este artículo: C.A. Gómez Ruiz, Números Tribonacci, S-unidades y triplas diofánticas, Rev Integr. Temas Mat. 33 (2015), No. 2, 121–133.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Arkin J., Hoggatt V.E. and Strauss E.G., “On Euler’s solution of a problem of Diophantus”, Fibonacci Quart. 17 (1979), No. 4, 333–339.
  2. Baker A. and Davenport H., “The equations 3x2 − 2 = y2 and 8x2 − 7 = z2”, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
  3. Bugeaud Y. and Dujella A., “On a problem of Diophantus for higher powers”, Math. Proc. Cambridge Philos. Soc. 135 (2003), No. 1, 1–10.
  4. Bugeaud Y. and Gyarmati K., “On generalizations of a problem of Diophantus”, Illinois J. Math. 48 (2004), No. 4, 1105–1115.
  5. Bravo J.J. and Luca F., “Powers of two in generalized Fibonacci sequences”, Rev. Colombiana Mat. 46 (2012),
  6. No. 1, 67–79.
  7. Cohen H., Number Theory, Vol. I: Tools and Diophantine equations, Springer, New York, 2007.
  8. Dresden G.P.B. and Du Z., “A simplified Binet formula for k-generalized Fibonacci numbers”, J. Integer Seq. 17 (2014), No. 4, Article 14.4.7, 9 pp.
  9. Dujella A., “There are only finitely many Diophantine quintuples”, J. Reine Angew. Math. 566 (2004), 183–214.
  10. Dujella A., “On the number of Diophantine m-tuples”, Ramanujan J. 15 (2008), No. 1, 37–46.
  11. Elsholtz C., Filipin A. and Fujita Y., “On Diophantine quintuples and D(−1)-quadruples”, Monatsh. Math. 175 (2014), No. 2, 227–239.
  12. Fuchs C., Luca F. and Szalay L., “Diophantine triples with values in binary recurrences”, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5) 7 (2008), No. 4, 579–608.
  13. Fuchs C., Luca F. and Szalay L., “Diophantine triples with values in k-generalized Fibonacci sequences” (preprint).
  14. Gibbs P., “Some rational Diophantine sextuples”, Glas. Mat. Ser. III 41 (2006), No. 2, 195–203.
  15. Gómez Ruiz C.A. and Luca F., “On the largest prime factor of the ratio of two generalized Fibonacci numbers”, J. Number Theory 152 (2015), 182–203.
  16. Gómez Ruiz C.A. and Luca F., “Tribonacci Diophantine quadruples”, Glas. Mat. Ser. III 50 (2015), No. 1, 17–24.
  17. Gómez Ruiz C.A. and Luca F., “Diophantine quadruples in the sequence of shifted Tribonacci numbers”, Publ. Math. Debrecen 86 (2015) No. 3-4, 473–491.
  18. Gyarmati K., Sárközy A. and Stewart C.L., “On shifted products which are powers”, Mathematika 49 (2002), No. 1-2, 227–230.
  19. Gyarmati K. and Stewart C.L., “On powers in shifted products”, Glas. Mat. Ser. III 42 (2007), No. 2, 273–279.
  20. Luca F., “On shifted products which are powers”, Glas. Mat. Ser. III 40 (2005), No. 1, 13–20.
  21. Luca F. and Szalay L., “Fibonacci Diophantine triples”, Glas. Mat. Ser. III 43 (2008), No. 2, 253–264.
  22. Luca F. and Szalay L., “Lucas Diophantine triples”, Integers 9 (2009), 441–457.
  23. Luca F. and Oyono R., “An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers”, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), No. 4, 45–50.
  24. Lucas E., “Théorie des fonctions numériques simplement périodiques”, Amer. J. Math. 1 (1878), No. 2-3, 184–240.
  25. Matveev E.M., “An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II”, Izv. Math. 64 (2000), No. 6, 1217–1269.
  26. Spickerman W.R., “Binet’s formula for the Tribonacci sequence”, Fibonacci Quart. 20 (1982), No. 2, 118–120.