Artículos científicos
Publicado 2015-12-04
Palabras clave
- Anillos Baer,
- quasi-Baer,
- p.p,
- p.q.-Baer,
- extensiones torcidas de Poincaré-Birkhoff-Witt.
Cómo citar
Reyes, A. (2015). Extensiones PBW torcidas de anillos de Baer, quasi-Baer, p.p. y p.q-Baer. Revista Integración, Temas De matemáticas, 33(2), 173–189. https://doi.org/10.18273/revint.v33n2-2015007
Resumen
El propósito de este artículo es estudiar las extensiones torcidas de Poincaré-Birkhoff-Witt de anillos de Baer, quasi-Baer, p.p. y p.q.-Baer. Utilizando una noción de rigidez, probamos que estas propiedades son estables para esta clase de extensiones.
Para citar este artículo: A. Reyes, Skew PBW Extensions of Bear, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat. 33 (2015), No. 2, 173–189.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
- Armendariz E.P., “A note on extensions of Baer and p.p.-rings”, J. Austral. Math. Soc. 18 (1974), 470–473.
- Armendariz E.P., Koo H.K. and Park J.K., “Isomorphic Ore extensions”, Comm. Algebra 15 (1987), No. 12, 2633–2652.
- Birkenmeier G.F., “Baer rings and quasicontinuous rings have a MDSN”, Pacific J. Math. 97 (1981), No. 2, 283–292.
- Birkenmeier G.F., Kim J.Y. and Park J.K., “Principally quasi-Baer rings”, Comm. Algebra 29 (2001), No. 2, 639–660.
- Birkenmeier G.F., Kim J.Y. and Park J.K., “Polynomial extensions of Baer and quasi-Baer rings”, J. Pure Appl. Algebra 159 (2001), No. 1, 25–42.
- Clark W.E., “Twisted matrix units semigroup algebras”, Duke Math. J. 34 (1967), 417–423.
- Gallego C. and Lezama O., “Gröbner bases for ideals of σ-PBW extensions”, Comm. Algebra 39 (2011), No. 1, 50–75.
- Han J., Hirano Y. and Kim H., “Semiprime Ore extensions”, Comm. Algebra 28 (2000), No. 8, 3795–3801.
- Han J., Hirano Y. and Kim H., “Some results on skew polynomial rings over a reduced ring”, in International Symposium on Ring Theory (Kyongju, 1999), Trends Math., Birkhäuser Boston, Boston, MA (2001), 123–129.
- Hashemi E., Moussavi A. and Seyyed Javadi H.H., “Polynomial Ore extensions of Baer and p.p.-rings”, Bull. Iranian Math. Soc. 29 (2003), No. 2, 65–86.
- Hashemi E. and Moussavi A., “Polynomial extensions of quasi-Baer rings”, Acta Math. Hungar. 107 (2005), No. 3, 207–224.
- Hinchcliffe O., “Difussion Algebras”, Thesis (Ph.D.), University of Sheffield, Sheffield, 2005, 118 p.
- Hong C.Y., Kim N.K. and Kwak T.K., “Ore extensions of Baer and p.p.-rings”, J. Pure Appl. Algebra 151 (2000), No. 3, 215–226.
- Hong C.Y., Kim N.K. and Lee Y., “Ore extensions of quasi-Baer rings”, Comm. Algebra 37 (2009), No. 6, 2030–2039.
- Kaplansky I., Rings of Operators. W.A. Benjamin, Inc., New York-Amsterdam, 1968.
- Krempa J., “Some Examples of reduced rings”, Algebra Colloq. 3 (1996), No. 4, 289–300.
- Lezama O. and Reyes A., “Some homological properties of skew PBW extensions”, Comm. Algebra 42 (2014), No. 3, 1200–1230.
- Lezama O., Acosta J.P. and Reyes A., “Prime ideals of skew PBW extensions”, Rev. Un. Mat. Argentina 56 (2015), No. 2, 39–55.
- Matczuk J., “A Characterization of σ-rigid rings”, Comm. Algebra 32 (2004), No. 11, 4333–4336.
- McConnell J.C. and Robson J.C., Noncommutative Noetherian rings, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001.
- Nasr-Isfahani A.R. and Moussavi A., “Baer and quasi-Baer differential polynomial rings”, Comm. Algebra 36 (2008), No. 9, 3533–3542.
- Passman D.S., “Prime ideals in enveloping rings”, Trans. Amer. Math. Soc. 302 (1987), No. 2, 535–560.
- Reyes A., “Ring and module theoretical properties of skew PBW extensions”, Thesis (Ph.D.), Universidad Nacional de Colombia, Bogotá, 2013, 142 p.
- Reyes A., “Jacobson’s conjecture and skew PBW extensions”, Rev. Integr. Temas Mat. 32 (2014), No. 2, 139 -152.