Artículos científicos
Publicado 2003-10-10
Palabras clave
- ideales primarios y P-primarios,
- módulos noetherianos
Cómo citar
Cáceres, L. F., & Meléndez, J. (2003). Aplicación de productos filtrados y ultraproductos. Revista Integración, Temas De matemáticas, 21(1 y 2), 1–14. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/529
Resumen
En este artículo se estudia la cerradura de las colecciones de submódulos y submódulos primos de un módulo unitario, de las colecciones de ideales primarios e ideales P-primarios de un anillo conmutativo y de las colecciones de subretículos, ideales e ideales primos de un retículo con respecto a la operación producto filtrado de conjuntos. También se presenta una caracterización de los módulos noetherianos, de los anillos cociente y de los retículos noetherianos usando la operación producto filtrado de conjuntos.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1]Burris S.andShankappanavar H.A Course in Universal Algebra,Springer–Verlag, New York, 1981.
[2]Cáceres Duque L.Ultraproducts of Sets and Ideal Theories of ConmutativeRings, Ph.D. Thesis, 1998.
[3]Cáceres Duque L.andNelson G.“A Description of Ideals in NoetherianRing”,Communications in Algebra, 2002.
[4]Cáceres Duque L.“Ideals Theories of the Rings of Polynomials Over theIntegers”,Bulletin of the Section Logic., Vol. 30, No1, 2001, pp. 21–31.
[5]Cáceres Duque L.andCarta E.“Filtered Products of Subgroups andIdeals”,Prooceding of the National Conference on Undergraduate Research,University of Kentucky, 2002.
[6]Grätzer G.Lattice Theory, W. H. Freeman and Company, San Francisco,1971.
[7]Hungerford T.Algebra, Springer–Verlag, New York, 1974.
[8]Kaplansky I.Conmutative Rings, Polygonal Publishing House, New York,1974.
[9]Nelsón G.“Compactness, Ultralimits, Ultraproducts and Maximal Ideals”,preprint, 1991.
[10]Northcott D.Lessons on Rings, Modules and Multiplicities, UniversityPrinting House, Great Britain, 1968.
[2]Cáceres Duque L.Ultraproducts of Sets and Ideal Theories of ConmutativeRings, Ph.D. Thesis, 1998.
[3]Cáceres Duque L.andNelson G.“A Description of Ideals in NoetherianRing”,Communications in Algebra, 2002.
[4]Cáceres Duque L.“Ideals Theories of the Rings of Polynomials Over theIntegers”,Bulletin of the Section Logic., Vol. 30, No1, 2001, pp. 21–31.
[5]Cáceres Duque L.andCarta E.“Filtered Products of Subgroups andIdeals”,Prooceding of the National Conference on Undergraduate Research,University of Kentucky, 2002.
[6]Grätzer G.Lattice Theory, W. H. Freeman and Company, San Francisco,1971.
[7]Hungerford T.Algebra, Springer–Verlag, New York, 1974.
[8]Kaplansky I.Conmutative Rings, Polygonal Publishing House, New York,1974.
[9]Nelsón G.“Compactness, Ultralimits, Ultraproducts and Maximal Ideals”,preprint, 1991.
[10]Northcott D.Lessons on Rings, Modules and Multiplicities, UniversityPrinting House, Great Britain, 1968.