Artículos científicos
Publicado 2000-08-08
Cómo citar
Gonzalez, G. A. (2000). Cuantización topológica y cohomología de Cech. Revista Integración, Temas De matemáticas, 18(2), 51–64. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/828
Resumen
En este trabajo se revisa el procedimiento de cuantización topológica basado en la cohomología de Cech, de acuerdo con los trabajos de O. Álvarez [4] y [5]. Se muestra cómo el método de cuantización se fundamenta en la libertad de escogencia del lagrangiano apropiado para una teoría de campos, a partir de una familia de lagrangianos que difieren entre sí por un término igual a una derivada total.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
1]P. A. M. Dirac. “Quantized Singularities in the Electromagnetic Field”.Proc.R. Soc. Lond.A33, 60. 1931.
[2]S. Deser, R. Jackiw and S. Templeton. “Three-dimensional Massive GaugeTheories”.Phys. Rev. Lett.48(15), 975. 1982.
[3]R. Jackiw. “Topological Investigations of quantized Gauge Theories”.CurrentAlgebra and Anomalies. World Scientific, 1985.
[4]O. ́Alvarez. “Cohomology and Field Theory”.Symposium on Anomalies, Geo-metry and Topology. World Scientific, 1985.
[5]O. ́Alvarez. “Topological Quantization and Cohomology”.Comm. Math. Phys.100(2), 279. 1985.
[6]R. Bott and L. Tu.Differential Forms in Algebrai c Topology. Springer-Verlag.1982.
[7]I. M. Singer and J. Thorpe.Lecture Notes in Elementary Topology and Geome-try. Undergraduate Text in Mathematics. Springer-Verlag. 1976.
[8]E. H. Spanier.Algebraic Topology. McGraw-Hill. 1966.
[9]L. D. Landau y E. M. Lifshitz,Mec ́anica. Revert ́e, Barcelona, 1975.
[10]A. O. Barut.Electrodynamics and Classical Theory of Fields and Particles.Dover, 1980.
[11]S. Weinberg.Gravitation and Cosmology. John Wiley and Sons, 1972.
[12]T. Y. Thomas.Concepts from Tensor Analysis and Differential Geometry. Se-cond Edition. Academic Press, 1965.
[13]Y. Choqut-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick.Analysis, Many-folds and Physics. North-Holland, 1977.
[14]T. Eguchi, P. B. Gilkey and A. J. Hamson. “Gravitation, Gauges Theories andDifferential Geometry”.Phys. Rep.66(6) , 213, 1980.
[15]T. T. Wu and C. N. Yang. “Dirac’s Monopole without String: Classical Lagran-gian Theory”.Phys. Rev. D14(2), 437, 1976.
[16]E. Witten. “Global Aspects of Current Algebras”.Nucl. Phys. B223, 422, 1983.
[2]S. Deser, R. Jackiw and S. Templeton. “Three-dimensional Massive GaugeTheories”.Phys. Rev. Lett.48(15), 975. 1982.
[3]R. Jackiw. “Topological Investigations of quantized Gauge Theories”.CurrentAlgebra and Anomalies. World Scientific, 1985.
[4]O. ́Alvarez. “Cohomology and Field Theory”.Symposium on Anomalies, Geo-metry and Topology. World Scientific, 1985.
[5]O. ́Alvarez. “Topological Quantization and Cohomology”.Comm. Math. Phys.100(2), 279. 1985.
[6]R. Bott and L. Tu.Differential Forms in Algebrai c Topology. Springer-Verlag.1982.
[7]I. M. Singer and J. Thorpe.Lecture Notes in Elementary Topology and Geome-try. Undergraduate Text in Mathematics. Springer-Verlag. 1976.
[8]E. H. Spanier.Algebraic Topology. McGraw-Hill. 1966.
[9]L. D. Landau y E. M. Lifshitz,Mec ́anica. Revert ́e, Barcelona, 1975.
[10]A. O. Barut.Electrodynamics and Classical Theory of Fields and Particles.Dover, 1980.
[11]S. Weinberg.Gravitation and Cosmology. John Wiley and Sons, 1972.
[12]T. Y. Thomas.Concepts from Tensor Analysis and Differential Geometry. Se-cond Edition. Academic Press, 1965.
[13]Y. Choqut-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick.Analysis, Many-folds and Physics. North-Holland, 1977.
[14]T. Eguchi, P. B. Gilkey and A. J. Hamson. “Gravitation, Gauges Theories andDifferential Geometry”.Phys. Rep.66(6) , 213, 1980.
[15]T. T. Wu and C. N. Yang. “Dirac’s Monopole without String: Classical Lagran-gian Theory”.Phys. Rev. D14(2), 437, 1976.
[16]E. Witten. “Global Aspects of Current Algebras”.Nucl. Phys. B223, 422, 1983.