Artículos científicos
Publicado 2019-02-19
Palabras clave
- Funciones continuas,
- continuo,
- hereditariamente indescomponible
Cómo citar
Bellamy, D. P. (2019). Imágenes continuas de continuos hereditariamente indescomponibles. Revista Integración, Temas De matemáticas, 37(1), 149–152. https://doi.org/10.18273/revint.v37n1-2019007
Resumen
El teorema demostrado es que todo continuo métrico es imagen continua de algún continuo métrico hereditariamente indescomponible.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1] Bellamy D.P., “Continuous mappings between continua", in Topology Conference Guilford College, 1979, Guilford College (1980), 101–112.
[2] Bellamy D.P., “Mappings of indecomposable continua”, Proc. Amer. Math. Soc. 30 (1971), 179–180.
[3] Bing R.H., “Higher-dimensional hereditarily indecomposable continua”, Trans. Amer. Math. Soc. 71 (1951), 267–273.
[4] Hart K.P., van Mill J. and Pol R., “Remarks on hereditarily indecomposable continua”, https://arXiv.org/pdf/math/0010234.pdf
[5] Mazurkiewicz S., “Sur l’existence des continus indécomposables”, Fund. Math. 25 (1935), No. 1, 327–328.
[6] Rogers J.W.Jr., “Continuous mappings on continua”, Proc. Auburn Topology Conference, Auburn University, Auburn, USA, 1969, 94–97.
[2] Bellamy D.P., “Mappings of indecomposable continua”, Proc. Amer. Math. Soc. 30 (1971), 179–180.
[3] Bing R.H., “Higher-dimensional hereditarily indecomposable continua”, Trans. Amer. Math. Soc. 71 (1951), 267–273.
[4] Hart K.P., van Mill J. and Pol R., “Remarks on hereditarily indecomposable continua”, https://arXiv.org/pdf/math/0010234.pdf
[5] Mazurkiewicz S., “Sur l’existence des continus indécomposables”, Fund. Math. 25 (1935), No. 1, 327–328.
[6] Rogers J.W.Jr., “Continuous mappings on continua”, Proc. Auburn Topology Conference, Auburn University, Auburn, USA, 1969, 94–97.