Eliminación de carbonilla en gases de escape con catalizadores DeNOx. Determinación de parámetros cinéticos

  • Marina Cortés-Reyes Universidad de Málaga
  • Concepción Herrera Universidad de Málaga
  • M. Ángeles Larrubia Universidad de Málaga
  • Luis J Alemany Universidad de Málaga

Resumen

Los catalizadores DeNOx se emplean en la eliminación de los óxidos de nitrógeno en vehículos diésel y, también, puede que entren en contacto con carbonilla o incluso sean utilizados como sistemas de reducción de NOx y soot simultáneamente (DPNR-Diesel Particulate NOx Reduction); por ello, es importante profundizar en el mecanismo de interacción entre el soot y el catalizador. Se ha utilizado un soot Printex U modelo y un catalizador Pt-K/Al2O3, con el potasio en forma de óxido e hidroxicarbonato hidratado. Se ha estudiado mediante TG-MS el proceso de eliminación en diferentes atmósferas oxidantes. Los procesos han sido desacoplados mediante el establecimiento de la función de distribución de energía de activación. En ausencia de catalizador, se produce la combustión del soot con el oxígeno molecular en fase gas a temperaturas alrededor de los 1100 K. En presencia de NO, la reducción tiene lugar a menor temperatura debido a su carácter más oxidante y a las especies de óxidos de nitrógeno retenidas y en fase gas. Si la carbonilla se encuentra en contacto con el catalizador Pt-K/Al2O3, los centros Pt-OH-K son los responsables de la eliminación vía gasificación a 780 K con una energía de activación alrededor de 85 kJ·mol-1.

Palabras clave: Trampas de NOx, Reactividad Intrínseca, Eliminación de Soot, Experimentos TG-MS.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] Suárez-Vázquez SI, Cruz-López A, Molina-Guerrero CE, Sánchez-Vázquez AI, Macías-Sotelo C. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion. Catalysts. 2018;8:71. https://doi.org/10.3390/catal8020071.

[2] Grabchenko M V, Mikheeva NN, Mamontov G V, Salaev MA, Liotta LF, Vodyankina OV. Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts. 2018;8:285. https://doi.org/10.3390/catal8070285.

[3] Montaña M, Leguizamón Aparicio MS, Ocsachoque MA, Navas MB, de C. L. Barros I, Rodriguez-Castellón E, et al. Zirconia-Supported Silver Nanoparticles for the Catalytic Combustion of Pollutants Originating from Mobile Sources. Catalysts. 2019;9:297. https://doi.org/10.3390/catal9030297.

[4] Piumetti M, Bensaid S, Russo N, Fino D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl Catal B Environ. 2015;165:742–51. https://doi.org/10.1016/j.apcatb.2014.10.062.

[5] Soler L, Casanovas A, Escudero C, Pérez-Dieste V, Aneggi E, Trovarelli A, et al. Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria-Based Catalysts. Chem Cat Chem. 2016;8:2735. https://doi.org/10.1002/cctc.201601038.

[6] Peralta MA, Zanuttini MS, Ulla MA, Querini CA. Diesel soot and NOx abatement on K/La2O3 catalyst: Influence of K precursor on soot combustion. Appl Catal A Gen. 2011;399:161–71. https://doi.org/10.1016/j.apcata.2011.03.046.

[7] Matarrese R, Castoldi L, Artioli N, Finocchio E, Busca G, Lietti L. On the activity and stability of Pt-K/Al2O3 LNT catalysts for diesel soot and NOx abatement. Appl Catal B Environ. 2014;144:783–91. https://doi.org/10.1016/j.apcatb.2013.08.012.

[8] Cortés-Reyes M, Herrera MC, Pieta IS,Larrubia MA, Alemany LJ. In situ TG-MS study of NOx and soot removal over LNT model catalysts. Appl Catal A Gen. 2016;523:193–9. https://doi.org/10.1016/j.apcata.2016.06.004.

[9] Pieta IS, García-Diéguez M, Herrera C, Larrubia MA, Alemany LJ. In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts. J Catal. 2010;270:256–67. https://doi.org/10.1016/j.jcat.2010.01.003.

[10] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Advance in the scaling up of a hybrid catalyst for NSR-SCR coupled systems under H2O + CO2 atmosphere. Catal Today. 2019. https://doi.org/10.1016/j.cattod.2019.05.010.

[11] Zheng Y, Li M, Wang D, Harold MP, Luss D. Rapid propylene pulsing for enhanced low temperature NOx conversion on combined LNT-SCR catalysts. Catal Today. 2016;267:192–201. https://doi.org/10.1016/j.cattod.2015.10.029.

[12] Matti Maricq M. Chemical characterization of particulate emissions from diesel engines: A review. J Aerosol Sci. 2007;38:1079–118. https://doi.org/10.1016/j.jaerosci.2007.08.001.

[13] Schejbal M, Marek M, Kubíček M, Kočí P. Modelling of diesel filters for particulates removal. Chem Eng J. 2009;154:219–30. https://doi.org/10.1016/j.cej.2009.04.056.

[14] Palma V, Meloni E. Microwave assisted regeneration of a catalytic diesel soot trap. Fuel. 2016;181:421–9. https://doi.org/10.1016/j.fuel.2016.05.016.

[15] Atribak I, López-Suárez FE, Bueno-López A, García-García A. New insights into the performance of ceria-zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catal Today. 2011;176:404–8. https://doi.org/10.1016/j.cattod.2010.11.023.

[16] Giménez-Mañogil J, García-García A. Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Process Technol. 2015;129:227–35. https://doi.org/10.1016/j.fuproc.2014.09.018.

[17] Giménez-Mañogil J, García-García A. Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: Synergistic effects. Appl Catal A Gen. 2017;542:226–39. https://doi.org/10.1016/j.apcata.2017.05.031.

[18] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Intrinsic reactivity analysis of soot removal in LNT-catalysts. Appl Catal B Environ. 2016;193:110–20. https://doi.org/10.1016/j.apcatb.2016.04.014.

[19] Zhang H, Yuan S, Wang JL, Gong M, Chen Y. Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J. 2017;327:1066–76. https://doi.org/10.1016/j.cej.2017.06.013.

[20] Pieta IS, Epling WS, García-Diéguez M, Luo JY, Larrubia MA, Herrera MC, et al. Nanofibrous Pt-Ba Lean NOx trap catalyst with improved sulfur resistance and thermal durability. Catal Today. 2011;175:55–64. https://doi.org/10.1016/j.cattod.2011.02.045.

[21] Pieta IS, García-Diéguez M, Larrubia MA, Alemany LJ, Epling WS. Nanofiber alumina supported lean NOx Trap: Improved Sulfur Tolerance and NOx Reduction. Top Catal. 2013;56:50–5. https://doi.org/10.1007/s11244-013-9928-1.

[22] López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144:398–406. https://doi.org/10.1016/j.combustflame.2005.08.012.

[23] Atribak I, Bueno-López A, García-García A. Uncatalysed and catalysed soot combustion under NOx+O2: Real diesel versus model soots. Combust Flame. 2010;157:2086–94. https://doi.org/10.1016/j.combustflame.2010.04.018.

[24] Castoldi L, Matarrese R, Lietti L, Forzatti P. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl Catal B Environ. 2009;90:278–85. https://doi.org/10.1016/j.apcatb.2009.03.022.

[25] Gálvez ME, Ascaso S, Stelmachowski P, Legutko P, Kotarba A, Moliner R, et al. Influence of the surface potassium species in Fe–K/Al2O3 catalysts on the soot oxidation activity in the presence of NOx. Appl Catal B Environ. 2014;152–153:88–98. https://doi.org/10.1016/j.apcatb.2014.01.041.

[26] Cortés-Reyes M, Herrera C, Larrubia MA, Auñón JA, González M, Alemany LJ. Impact of new biofuels on pollutant production and motor performance and study of DeNOx technologies to achieve zero emission in real conditions. Int J Innov Res Sci Eng Technol. 2016;5:13082–8. https://doi.org/10.15680/IJIRSET.2016.0507177.

[27] Wu S, Song C, Bin F, Lv G, Song J, Gong C. La1-xCexMn1-yCoyO3 perovskite oxides: Preparation, physico-chemical properties and catalytic activity for the reduction of diesel soot. Mater Chem Phys. 2014;148:181–9. https://doi.org/10.1016/j.matchemphys.2014.07.029.

[28] Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y. Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal Today. 2012;185:99–103. https://doi.org/10.1016/j.cattod.2011.10.030.

[29] Wang Y, Wang J, Chen H, Yao M, Li Y. Preparation and NOx -assisted soot oxidation activity of a CuO-CeO2 mixed oxide catalyst. Chem Eng Sci. 2015;135:294–300. https://doi.org/10.1016/j.ces.2015.03.024.

[30] Müller J-O, Frank B, Jentoft RE, Schlögl R, Su DS. The oxidation of soot particulate in the presence of NO2. Catal Today. 2012;191:106–11. https://doi.org/10.1016/j.cattod.2012.03.010.

[31] Matarrese R, Castoldi L, Cortés-Reyes M, Alemany LJ, Lietti L. LNT Catalysts for the Simultaneous Removal of NOx and Soot: The DPNR Concept. In: NOx Trap Catalysts and Technologies. United Kingdom: Royal Society of Chemistry; 2018. p. 353–83.

[32] López-Fonseca R, Elizundia U, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Appl Catal B Environ. 2005;61:150–8. https://doi.org/10.1016/j.apcatb.2005.04.016.
Publicado
2019-11-19
Sección
Artículos