Vol. 32 No. 2 (2019): Revista ION
Articles

Soot removal from exhaust using DeNOx catalysts. Kinetic parameters estimation

Marina Cortés-Reyes
Universidad de Málaga
Concepción Herrera
Universidad de Málaga
M. Ángeles Larrubia
Universidad de Málaga
Luis J Alemany
Universidad de Málaga

Published 2019-11-19

Keywords

  • LNT Catalysts,
  • Intrinsic Reactivity,
  • Soot Removal,
  • TG-MS Runs.

How to Cite

Cortés-Reyes, M., Herrera, C., Larrubia, M. Ángeles, & Alemany, L. J. (2019). Soot removal from exhaust using DeNOx catalysts. Kinetic parameters estimation. Revista ION, 32(2), 41–51. https://doi.org/10.18273/revion.v32n2-2019004

Abstract

DeNOx catalysts eliminate nitrogen oxides in diesel vehicles and, in addition, can come in contact with soot or, even, be used as Diesel Particulate NOx Reduction (DPNR) material. Therefore, the understanding of the interaction mechanism between soot and catalyst is of high interest. The Printex U model soot and a Pt-K/Al2O3 catalyst have been used, with potassium in the form of oxide and hydrated hydroxycarbonate. The process of elimination in different oxidizing atmospheres has been studied by TG-MS. The processes have been decoupled by establishing the distribution function of activation energy. In the absence of catalyst, the combustion of the soot with the molecular oxygen in the gas phase occurs at temperatures around 1100K. In the presence of NO, the reduction takes place at a lower temperature due to its more oxidizing character and the species of nitrogen oxides retained and in the gas phase. If the carbon is in contact with the Pt-K/Al2O3 catalyst, the Pt-OH-K centers are responsible for the elimination via gasification at 780K with an activation energy around 85 kJ·mol-1.

Downloads

Download data is not yet available.

References

[1] Suárez-Vázquez SI, Cruz-López A, Molina-Guerrero CE, Sánchez-Vázquez AI, Macías-Sotelo C. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion. Catalysts. 2018;8:71. https://doi.org/10.3390/catal8020071.

[2] Grabchenko M V, Mikheeva NN, Mamontov G V, Salaev MA, Liotta LF, Vodyankina OV. Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts. 2018;8:285. https://doi.org/10.3390/catal8070285.

[3] Montaña M, Leguizamón Aparicio MS, Ocsachoque MA, Navas MB, de C. L. Barros I, Rodriguez-Castellón E, et al. Zirconia-Supported Silver Nanoparticles for the Catalytic Combustion of Pollutants Originating from Mobile Sources. Catalysts. 2019;9:297. https://doi.org/10.3390/catal9030297.

[4] Piumetti M, Bensaid S, Russo N, Fino D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl Catal B Environ. 2015;165:742–51. https://doi.org/10.1016/j.apcatb.2014.10.062.

[5] Soler L, Casanovas A, Escudero C, Pérez-Dieste V, Aneggi E, Trovarelli A, et al. Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria-Based Catalysts. Chem Cat Chem. 2016;8:2735. https://doi.org/10.1002/cctc.201601038.

[6] Peralta MA, Zanuttini MS, Ulla MA, Querini CA. Diesel soot and NOx abatement on K/La2O3 catalyst: Influence of K precursor on soot combustion. Appl Catal A Gen. 2011;399:161–71. https://doi.org/10.1016/j.apcata.2011.03.046.

[7] Matarrese R, Castoldi L, Artioli N, Finocchio E, Busca G, Lietti L. On the activity and stability of Pt-K/Al2O3 LNT catalysts for diesel soot and NOx abatement. Appl Catal B Environ. 2014;144:783–91. https://doi.org/10.1016/j.apcatb.2013.08.012.

[8] Cortés-Reyes M, Herrera MC, Pieta IS,Larrubia MA, Alemany LJ. In situ TG-MS study of NOx and soot removal over LNT model catalysts. Appl Catal A Gen. 2016;523:193–9. https://doi.org/10.1016/j.apcata.2016.06.004.

[9] Pieta IS, García-Diéguez M, Herrera C, Larrubia MA, Alemany LJ. In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts. J Catal. 2010;270:256–67. https://doi.org/10.1016/j.jcat.2010.01.003.

[10] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Advance in the scaling up of a hybrid catalyst for NSR-SCR coupled systems under H2O + CO2 atmosphere. Catal Today. 2019. https://doi.org/10.1016/j.cattod.2019.05.010.

[11] Zheng Y, Li M, Wang D, Harold MP, Luss D. Rapid propylene pulsing for enhanced low temperature NOx conversion on combined LNT-SCR catalysts. Catal Today. 2016;267:192–201. https://doi.org/10.1016/j.cattod.2015.10.029.

[12] Matti Maricq M. Chemical characterization of particulate emissions from diesel engines: A review. J Aerosol Sci. 2007;38:1079–118. https://doi.org/10.1016/j.jaerosci.2007.08.001.

[13] Schejbal M, Marek M, Kubíček M, Kočí P. Modelling of diesel filters for particulates removal. Chem Eng J. 2009;154:219–30. https://doi.org/10.1016/j.cej.2009.04.056.

[14] Palma V, Meloni E. Microwave assisted regeneration of a catalytic diesel soot trap. Fuel. 2016;181:421–9. https://doi.org/10.1016/j.fuel.2016.05.016.

[15] Atribak I, López-Suárez FE, Bueno-López A, García-García A. New insights into the performance of ceria-zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catal Today. 2011;176:404–8. https://doi.org/10.1016/j.cattod.2010.11.023.

[16] Giménez-Mañogil J, García-García A. Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Process Technol. 2015;129:227–35. https://doi.org/10.1016/j.fuproc.2014.09.018.

[17] Giménez-Mañogil J, García-García A. Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: Synergistic effects. Appl Catal A Gen. 2017;542:226–39. https://doi.org/10.1016/j.apcata.2017.05.031.

[18] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Intrinsic reactivity analysis of soot removal in LNT-catalysts. Appl Catal B Environ. 2016;193:110–20. https://doi.org/10.1016/j.apcatb.2016.04.014.

[19] Zhang H, Yuan S, Wang JL, Gong M, Chen Y. Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J. 2017;327:1066–76. https://doi.org/10.1016/j.cej.2017.06.013.

[20] Pieta IS, Epling WS, García-Diéguez M, Luo JY, Larrubia MA, Herrera MC, et al. Nanofibrous Pt-Ba Lean NOx trap catalyst with improved sulfur resistance and thermal durability. Catal Today. 2011;175:55–64. https://doi.org/10.1016/j.cattod.2011.02.045.

[21] Pieta IS, García-Diéguez M, Larrubia MA, Alemany LJ, Epling WS. Nanofiber alumina supported lean NOx Trap: Improved Sulfur Tolerance and NOx Reduction. Top Catal. 2013;56:50–5. https://doi.org/10.1007/s11244-013-9928-1.

[22] López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144:398–406. https://doi.org/10.1016/j.combustflame.2005.08.012.

[23] Atribak I, Bueno-López A, García-García A. Uncatalysed and catalysed soot combustion under NOx+O2: Real diesel versus model soots. Combust Flame. 2010;157:2086–94. https://doi.org/10.1016/j.combustflame.2010.04.018.

[24] Castoldi L, Matarrese R, Lietti L, Forzatti P. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl Catal B Environ. 2009;90:278–85. https://doi.org/10.1016/j.apcatb.2009.03.022.

[25] Gálvez ME, Ascaso S, Stelmachowski P, Legutko P, Kotarba A, Moliner R, et al. Influence of the surface potassium species in Fe–K/Al2O3 catalysts on the soot oxidation activity in the presence of NOx. Appl Catal B Environ. 2014;152–153:88–98. https://doi.org/10.1016/j.apcatb.2014.01.041.

[26] Cortés-Reyes M, Herrera C, Larrubia MA, Auñón JA, González M, Alemany LJ. Impact of new biofuels on pollutant production and motor performance and study of DeNOx technologies to achieve zero emission in real conditions. Int J Innov Res Sci Eng Technol. 2016;5:13082–8. https://doi.org/10.15680/IJIRSET.2016.0507177.

[27] Wu S, Song C, Bin F, Lv G, Song J, Gong C. La1-xCexMn1-yCoyO3 perovskite oxides: Preparation, physico-chemical properties and catalytic activity for the reduction of diesel soot. Mater Chem Phys. 2014;148:181–9. https://doi.org/10.1016/j.matchemphys.2014.07.029.

[28] Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y. Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal Today. 2012;185:99–103. https://doi.org/10.1016/j.cattod.2011.10.030.

[29] Wang Y, Wang J, Chen H, Yao M, Li Y. Preparation and NOx -assisted soot oxidation activity of a CuO-CeO2 mixed oxide catalyst. Chem Eng Sci. 2015;135:294–300. https://doi.org/10.1016/j.ces.2015.03.024.

[30] Müller J-O, Frank B, Jentoft RE, Schlögl R, Su DS. The oxidation of soot particulate in the presence of NO2. Catal Today. 2012;191:106–11. https://doi.org/10.1016/j.cattod.2012.03.010.

[31] Matarrese R, Castoldi L, Cortés-Reyes M, Alemany LJ, Lietti L. LNT Catalysts for the Simultaneous Removal of NOx and Soot: The DPNR Concept. In: NOx Trap Catalysts and Technologies. United Kingdom: Royal Society of Chemistry; 2018. p. 353–83.

[32] López-Fonseca R, Elizundia U, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Appl Catal B Environ. 2005;61:150–8. https://doi.org/10.1016/j.apcatb.2005.04.016.