v. 32 n. 2 (2019): Revista ION
Artigos

Remoção de carvão nos gases de escape com catalisadores DeNOx. Determinação de parâmetros cinéticos

Marina Cortés-Reyes
Universidad de Málaga
Concepción Herrera
Universidad de Málaga
M. Ángeles Larrubia
Universidad de Málaga
Luis J Alemany
Universidad de Málaga

Publicado 2019-11-19

Palavras-chave

  • Catalisadores LNT,
  • Reatividade Intrínseca,
  • Remoção de Carvão,
  • Ensaio de TG-MS.

Como Citar

Cortés-Reyes, M., Herrera, C., Larrubia, M. Ángeles, & Alemany, L. J. (2019). Remoção de carvão nos gases de escape com catalisadores DeNOx. Determinação de parâmetros cinéticos. REVISTA ION, 32(2), 41–51. https://doi.org/10.18273/revion.v32n2-2019004

Resumo

Os catalisadores do tipo DeNOx eliminam óxidos de nitrogênio em veículos a diesel e, também, podem entrar em contato com partículas ou até mesmo serem usados como sistemas de redução de NOx e carvão simultaneamente (DPNR-Diesel Particulate NOx Reduction); portanto, é importante aprofundar o mecanismo de interação entre a carvão e o catalisador. Carvão modelo Printex U e um catalisador Pt-K/Al2O3 foram utilizados, com potássio na forma de óxido e idroxicarbonato hidratado. O processo de eliminação em diferentes atmosferas oxidantes foi estudado mediante TG-MS. Os processos foram dissociados, estabelecendo a função de distribuição de energia de ativação. Na ausência de um catalisador, a combustão do carvão com o oxigênio molecular na fase gasosa ocorre a temperaturas em torno de 1100K. Na presença de NO, a redução ocorre a uma temperatura inferior devido ao seu caráter mais oxidante e às espécies de óxidos de nitrogênio retidos e na fase gasosa. Se o carbono estiver em contato com o catalisador Pt-K/Al2O3, os centros de Pt-OH-K são responsáveis pela eliminação via gaseificação a 780K com uma energia de ativação em torno de 85 kJ·mol-1.

Downloads

Não há dados estatísticos.

Referências

[1] Suárez-Vázquez SI, Cruz-López A, Molina-Guerrero CE, Sánchez-Vázquez AI, Macías-Sotelo C. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion. Catalysts. 2018;8:71. https://doi.org/10.3390/catal8020071.

[2] Grabchenko M V, Mikheeva NN, Mamontov G V, Salaev MA, Liotta LF, Vodyankina OV. Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts. 2018;8:285. https://doi.org/10.3390/catal8070285.

[3] Montaña M, Leguizamón Aparicio MS, Ocsachoque MA, Navas MB, de C. L. Barros I, Rodriguez-Castellón E, et al. Zirconia-Supported Silver Nanoparticles for the Catalytic Combustion of Pollutants Originating from Mobile Sources. Catalysts. 2019;9:297. https://doi.org/10.3390/catal9030297.

[4] Piumetti M, Bensaid S, Russo N, Fino D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl Catal B Environ. 2015;165:742–51. https://doi.org/10.1016/j.apcatb.2014.10.062.

[5] Soler L, Casanovas A, Escudero C, Pérez-Dieste V, Aneggi E, Trovarelli A, et al. Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria-Based Catalysts. Chem Cat Chem. 2016;8:2735. https://doi.org/10.1002/cctc.201601038.

[6] Peralta MA, Zanuttini MS, Ulla MA, Querini CA. Diesel soot and NOx abatement on K/La2O3 catalyst: Influence of K precursor on soot combustion. Appl Catal A Gen. 2011;399:161–71. https://doi.org/10.1016/j.apcata.2011.03.046.

[7] Matarrese R, Castoldi L, Artioli N, Finocchio E, Busca G, Lietti L. On the activity and stability of Pt-K/Al2O3 LNT catalysts for diesel soot and NOx abatement. Appl Catal B Environ. 2014;144:783–91. https://doi.org/10.1016/j.apcatb.2013.08.012.

[8] Cortés-Reyes M, Herrera MC, Pieta IS,Larrubia MA, Alemany LJ. In situ TG-MS study of NOx and soot removal over LNT model catalysts. Appl Catal A Gen. 2016;523:193–9. https://doi.org/10.1016/j.apcata.2016.06.004.

[9] Pieta IS, García-Diéguez M, Herrera C, Larrubia MA, Alemany LJ. In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts. J Catal. 2010;270:256–67. https://doi.org/10.1016/j.jcat.2010.01.003.

[10] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Advance in the scaling up of a hybrid catalyst for NSR-SCR coupled systems under H2O + CO2 atmosphere. Catal Today. 2019. https://doi.org/10.1016/j.cattod.2019.05.010.

[11] Zheng Y, Li M, Wang D, Harold MP, Luss D. Rapid propylene pulsing for enhanced low temperature NOx conversion on combined LNT-SCR catalysts. Catal Today. 2016;267:192–201. https://doi.org/10.1016/j.cattod.2015.10.029.

[12] Matti Maricq M. Chemical characterization of particulate emissions from diesel engines: A review. J Aerosol Sci. 2007;38:1079–118. https://doi.org/10.1016/j.jaerosci.2007.08.001.

[13] Schejbal M, Marek M, Kubíček M, Kočí P. Modelling of diesel filters for particulates removal. Chem Eng J. 2009;154:219–30. https://doi.org/10.1016/j.cej.2009.04.056.

[14] Palma V, Meloni E. Microwave assisted regeneration of a catalytic diesel soot trap. Fuel. 2016;181:421–9. https://doi.org/10.1016/j.fuel.2016.05.016.

[15] Atribak I, López-Suárez FE, Bueno-López A, García-García A. New insights into the performance of ceria-zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catal Today. 2011;176:404–8. https://doi.org/10.1016/j.cattod.2010.11.023.

[16] Giménez-Mañogil J, García-García A. Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Process Technol. 2015;129:227–35. https://doi.org/10.1016/j.fuproc.2014.09.018.

[17] Giménez-Mañogil J, García-García A. Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: Synergistic effects. Appl Catal A Gen. 2017;542:226–39. https://doi.org/10.1016/j.apcata.2017.05.031.

[18] Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Intrinsic reactivity analysis of soot removal in LNT-catalysts. Appl Catal B Environ. 2016;193:110–20. https://doi.org/10.1016/j.apcatb.2016.04.014.

[19] Zhang H, Yuan S, Wang JL, Gong M, Chen Y. Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J. 2017;327:1066–76. https://doi.org/10.1016/j.cej.2017.06.013.

[20] Pieta IS, Epling WS, García-Diéguez M, Luo JY, Larrubia MA, Herrera MC, et al. Nanofibrous Pt-Ba Lean NOx trap catalyst with improved sulfur resistance and thermal durability. Catal Today. 2011;175:55–64. https://doi.org/10.1016/j.cattod.2011.02.045.

[21] Pieta IS, García-Diéguez M, Larrubia MA, Alemany LJ, Epling WS. Nanofiber alumina supported lean NOx Trap: Improved Sulfur Tolerance and NOx Reduction. Top Catal. 2013;56:50–5. https://doi.org/10.1007/s11244-013-9928-1.

[22] López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144:398–406. https://doi.org/10.1016/j.combustflame.2005.08.012.

[23] Atribak I, Bueno-López A, García-García A. Uncatalysed and catalysed soot combustion under NOx+O2: Real diesel versus model soots. Combust Flame. 2010;157:2086–94. https://doi.org/10.1016/j.combustflame.2010.04.018.

[24] Castoldi L, Matarrese R, Lietti L, Forzatti P. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl Catal B Environ. 2009;90:278–85. https://doi.org/10.1016/j.apcatb.2009.03.022.

[25] Gálvez ME, Ascaso S, Stelmachowski P, Legutko P, Kotarba A, Moliner R, et al. Influence of the surface potassium species in Fe–K/Al2O3 catalysts on the soot oxidation activity in the presence of NOx. Appl Catal B Environ. 2014;152–153:88–98. https://doi.org/10.1016/j.apcatb.2014.01.041.

[26] Cortés-Reyes M, Herrera C, Larrubia MA, Auñón JA, González M, Alemany LJ. Impact of new biofuels on pollutant production and motor performance and study of DeNOx technologies to achieve zero emission in real conditions. Int J Innov Res Sci Eng Technol. 2016;5:13082–8. https://doi.org/10.15680/IJIRSET.2016.0507177.

[27] Wu S, Song C, Bin F, Lv G, Song J, Gong C. La1-xCexMn1-yCoyO3 perovskite oxides: Preparation, physico-chemical properties and catalytic activity for the reduction of diesel soot. Mater Chem Phys. 2014;148:181–9. https://doi.org/10.1016/j.matchemphys.2014.07.029.

[28] Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y. Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal Today. 2012;185:99–103. https://doi.org/10.1016/j.cattod.2011.10.030.

[29] Wang Y, Wang J, Chen H, Yao M, Li Y. Preparation and NOx -assisted soot oxidation activity of a CuO-CeO2 mixed oxide catalyst. Chem Eng Sci. 2015;135:294–300. https://doi.org/10.1016/j.ces.2015.03.024.

[30] Müller J-O, Frank B, Jentoft RE, Schlögl R, Su DS. The oxidation of soot particulate in the presence of NO2. Catal Today. 2012;191:106–11. https://doi.org/10.1016/j.cattod.2012.03.010.

[31] Matarrese R, Castoldi L, Cortés-Reyes M, Alemany LJ, Lietti L. LNT Catalysts for the Simultaneous Removal of NOx and Soot: The DPNR Concept. In: NOx Trap Catalysts and Technologies. United Kingdom: Royal Society of Chemistry; 2018. p. 353–83.

[32] López-Fonseca R, Elizundia U, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates. Appl Catal B Environ. 2005;61:150–8. https://doi.org/10.1016/j.apcatb.2005.04.016.