Publicado 2021-05-27
Palabras clave
- Algoritmo WAR,
- Nanopartículas,
- Quitosano,
- Análisis Ambiental,
- Producción
Cómo citar
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
En la actualidad, los bioadsorbentes modificados con nanopartículas han tomado relevancia como posible opción en el tratamiento de aguas contaminadas debido a su bajo costo, abundancia natural y alta eficiencia. Se han diseñado procesos a escala industrial para producir microperlas modificadas de quitosano; sin embargo, estos deben ser analizados bajo criterios de sostenibilidad antes de una posible implementación. En este trabajo se evaluó el desempeño ambiental de un proceso a escala industrial usando el algoritmo WAR, que sirva como sustento para posibles proyectos económicos. Se simuló el proceso usando el software Aspen Plus ® para obtener información del proceso como flujos másicos y energéticos. La evaluación se realizó utilizando el software WARGUI. Se cuantificó el Impacto potencial ambiental (PEI) de cuatro casos de estudio mediante cuatro enfoques de impactos. Este análisis arrojó valores negativos en los PEI totales generados y se encontraron valores de tasa hasta 5740 PEI/h para la tasa de PEI de salida. En las categorías toxicológicas no hubo valores apreciables (entre -212 y -1,21 PEI/h) para ningún caso debido a la baja presencia de sustancias tóxicas en el proceso. En las categorías atmosféricas, los PEI se deben mayormente al uso de combustibles. El gas natural tuvo el mejor desempeño ambiental reportando bajos valores para las tasas de PEI de generación y salida (-308, 4970 PEI/h, respectivamente). Debido a lo anterior, es posible afirmar que el proceso tiene un desempeño ambiental aceptable.
Descargas
Referencias
[2] Wang Q, Yang Z. Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut. 2016;218:358–65.
[3] Bhatnagar A, Sillanpää M. Applications of chitinand chitosan-derivatives for the detoxification of water and wastewater - A short review. Adv Colloid Interface Sci. 2009;152(1–2):26–38.
[4] Inyinbor A, Adebesin B, Oluyori A, Adelani-Akande T, Dada A, Toyin O. Water Pollution: Effects, Prevention, and Climatic Impact. Water Challenges an Urban World; 2018.
[5] Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. Int J Biol Macromol. 2020;150:1072–83.
[6] Çifçi Dİ, Meriç S. A review on pumice for water and wastewater treatment. 2015;3994(December).
[7] Cogollo-herrera K, Bonfante-álvarez H, Ávilamontiel G De. Techno-economic Sensitivity Analysis of Large Scale Chitosan Production Process from Shrimp Shell Wastes. 2018;70:2179–84.
[8] Vakili M, Deng S, Cagnetta G, Wang W, Meng P. Separation and Puri fi cation Technology Regeneration of chitosan-based adsorbents used in heavy metal adsorption : A review. Sep Purif Technol. 2019;224(May):373–87.
[9] Lalov IG, Guerginov II, Krysteva MA, Fartsov K. Treatment of waste water from distilleries with chitosan. Water Res. 2000;34(5):1503–6.
[10] Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–92.
[11] Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5(1):164–83.
[12] Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou Kana MTH. Advancement on modification of chitosan biopolymer and it potential applications. Int J Biol Macromol. 2020;152:681–702.
[13] Wadhawan S, Jain A, Nayyar J, Mehta SK. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J Water Process Eng. 2020;33(November 2019):101038.
[14] Kumari P, Alam M, Siddiqi WA. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain Mater Technol. 2019;22:e00128.
[15] Dong Z, Cui H, Wang Y, Wang C, Li Y, Wang C. Biocompatible AIE material from natural resources: Chitosan and its multifunctional applications. Carbohydr Polym. 2020;227(June 2019):115338.
[16] Malek J, Desai TN. A systematic literature review to map literature focus of sustainable manufacturing. J Clean Prod. 2020;256:120345.
[17] Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016;48:40–50.
[18] Bonfante-Alvarez H, De Avila-Montiel G, Herrera-Barros A, Torrenegra-Alarcón M, González-Delgado ÁD. Evaluation of five chitosan production routes with astaxanthin recovery from shrimp exoskeletons. Chem Eng Trans. 2018;70:1969–74.
[19] Moreno-Sader K, Meramo-Hurtado SI, González-Delgado AD. Environmental sustainability analysis of chitosan microbeads production for pharmaceutical applications via computer-aided simulation, WAR and TRACI assessments. Sustain Chem Pharm.
2020;15(December 2019).
[20] Meramo-hurtado SI, Zuorro A. applied sciences Environmental Assessment of Large Scale Production of Magnetite ( Fe 3 O 4 ) Nanoparticles via Coprecipitation. Appl Sci. 2019;9(1682):10.
[21] Meramo-Hurtado S, Herrera-Barros A, González-Delgado Á. Evaluation of large-scale production of chitosan microbeads modified with nanoparticles based on exergy analysis. Energies. 2019;12(7).
[22] Shadiya OO, Satish V, High KA. Process enhancement through waste minimization and multiobjective optimization. J Clean Prod. 2012;31:137–49.
[23] Ramzan N, Degenkolbe S, Witt W. Evaluating and improving environmental performance of HC’s recovery system: A case study of distillation unit. Chem Eng J. 2008;140(1–3):201–13.
[24] Barrett WM, van Baten J, Martin T. Implementation of the waste reduction (WAR) algorithm utilizing flowsheet monitoring.Comput Chem Eng. 2011;35(12):2680–6.
[25] Young D, Scharp R, Cabezas H. The waste reduction (WAR) algorithm: Environmental impacts, energy consumption, and engineering economics. Waste Manag. 2000;20(8):605–15.
[26] Cabezas H, Bare JC, Mallick SK. Pollution prevention with chemical process simulators: The generalized waste reduction (WAR) algorithm - Full version. Comput Chem Eng. 1999;23(4–5):623–34.
[27] Ordouei MH, Elsholkami M, Elkamel A, Croiset E. New composite sustainability indices for the assessment of a chemical process in the conceptual design stage: Case study on hydrogenation plant. J Clean Prod. 2016;124:132–41.
[28] Moreno-Sader K, Meramo-Hurtado SI, González-Delgado AD. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew Sustain Energy Rev. 2019;112(May):42–57.
[29] Sepiacci P, Depetri V, Manca D. A systematic approach to the optimal design of chemical plants with waste reduction and market uncertainty. Comput Chem Eng. 2017;102:96–109.
[30] Young DM, Cabezas H. Designing sustainable processes with simulation: The waste reduction (WAR) algorithm. Comput Chem Eng. 1999;23(10):1477–91.
[31] Meramo SI, Bonfante H, De Avila-Montiel G, Herrera-Barros A, Gonzalez-Delgado A. Environmental assessment of a large-scale production of TiO2 nanoparticles via green chemistry. Chem Eng Trans. 2018;70:1063–8.
[32] Bertel F, Cogollo G, Meramo-Hurtado S, González-Delgado A. Computer aided environmental analysis of a large-scale production of chitosan micro-beads modified with thiourea and magnetite. IOP Conf Ser Mater Sci Eng. 2019;519(1).
[33] Mokhatab S, Poe WA, Mak JY. Environmental aspects of gas processing and use. In: Handbook of Natural Gas Transmission and Processing. 2006. p. 485–505.
[34] Munawer ME. Human health and environmental impacts of coal combustion and post-combustion wastes. J Sustain Min. 2018;17(2):87–96.
[35] Meramo-Hurtado S, Urbina-Suaréz N, González- Delgado Á. Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. J Clean Prod. 2019;237.