Vol. 35 Núm. 2 (2022): Revista ION
Artículos

Evaluación técnico-económica de una propuesta de planta de tratamiento de aguas residuales crómicas

Amaury Pérez Sánchez
Universidad de Camagüey
Marisabel Sánchez González
University of Camagüey

Publicado 2022-12-02

Palabras clave

  • Cromo,
  • Evaluación económica,
  • Simulación de proceso,
  • Tratamiento de aguas residuales

Cómo citar

Pérez Sánchez, A., & Sánchez González, M. . (2022). Evaluación técnico-económica de una propuesta de planta de tratamiento de aguas residuales crómicas. Revista ION, 35(2), 33–48. https://doi.org/10.18273/revion.v35n2-2022003

Resumen

Las plantas de tratamiento de aguas residuales son sistemas que, de funcionar apropiadamente, pueden ayudar a la salud de la industria y el medioambiente. En el presente trabajo se efectuó la evaluación técnico-económica de una propuesta de planta de tratamiento de aguas residuales crómicas con una capacidad de procesamiento de 9 t de aguas residuales por lote, con el fin de determinar sus principales parámetros de rentabilidad, empleando el simulador SuperPro Designer® v. 10. Se generan alrededor de 6959,90 L/lote de agua tratada, mientras que se requiere una inversión total de capital de USD $ 3,549 millones y un capital fijo directo de USD $ 3,222 millones. La partida que más influencia presenta en los costos anuales de operación es la de costos dependientes de la instalación (USD $ 345 000/año) mientras que el reactivo que más influye en los costos anuales por concepto de consumo de materiales es el cloruro férrico (USD $ 56 805/año). Se obtuvo un costo unitario de procesamiento de USD $ 0,22/kg, unas ganancias netas anuales de USD $ 486 000 y un Retorno de la Inversión de 22,16%. Los valores obtenidos de los indicadores Valor Actual Neto (USD $ 3 361 000), Tasa Interna de Retorno (29,61 %) y Periodo de Recuperación de la Inversión (4,51 años) permiten establecer que la propuesta es rentable bajo las condiciones económicas actuales de Cuba.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies. 2016;2(4):175-84. https://doi.org/10.1016/j.reffit.2016.09.004
  2. Zakharov Y, Bondareva L. Simulation of Domestic and Industrial Wastewater Disposal in Flooded Mine Workings. Procedia Engineering. 2015;117:389-96. doi.org/10.1016/j.proeng.2015.08.183
  3. Chandraseagar S, Abdulrazik AH, Abdulrahman SN, Abdaziz, MA. Aspen Plus simulation and optimization of industrial spent caustic wastewater treatment by wet oxidation method. IOP Conf. Series: Materials Science and Engineering. 2019;702:012011. doi.org/10.1088/1757-899X/702/1/012011
  4. Jeon C, Nah IW, Hwang KY. Adsorption of heavy metals using magnetically modified alginic acid. Hydrometallurgy. 2007;86(3):140-46. doi.org/10.1016/j.hydromet.2006.11.010
  5. Gupta VK, Chandra R, Tyagi I, Verma M. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. Journal of Colloid and Interface Science. 2016;478:54-62. doi.org/10.1016/j.jcis.2016.05.064
  6. Wang X, Wei Y, Wang S, Chen L. Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;472:57-62. doi.org/10.1016/j.colsurfa.2015.02.033
  7. Ai T, Jiang X, Liu Q. Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres. Open Chem. 2018;16:842-52. doi.org/10.1515/chem-2018-0073
  8. Jasim NA. The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Engineering. 2020; 7(1): 1723782. doi.org/10.1080/23311916.2020.1723782
  9. Janssen PMJ, Meinema K, Roest HF. Biological Phosphorus Removal: Manual for Design and Operation. United Kingdom: STOWA; 2002.
  10. Davis ML, Cornwell DA. Introduction to environmental engineering. USA: McGraw-Hill; 2008.
  11. Asami H, Golabi M, Albaji M. Simulation of the biochemical and chemical oxygen demand and total suspended solids in wastewater treatment plants: Data-mining approach. Journal of Cleaner Production, 2021;296:126533. doi.org/10.1016/j.jclepro.2021.126533
  12. Gontarski CA, Rodrigues PR, Mori M, Prenem LF. Simulation of an industrial wastewater treatment plant using artificial neural networks. Computers and Chemical Engineering. 2000;24:1719-23. doi.org/10.1016/S0098-1354(00)00449-X
  13. Oliveira-Esquerre KP, Mori M, Bruns RE. Simulation of an industrial wastewater treatment plant using Artificial Neural Networks and Principal Components Analysis. Brazilian Journal of Chemical Engineering. 2002;19(4):365-70. doi.org/10.1590/S0104-66322002000400002
  14. Banaei FK, Zinatizadeh AAL, Mesgara M, Salari Z. Dynamic Performance Analysis and Simulation of a Full Scale Activated Sludge System Treating an Industrial Wastewater Using Artificial Neural Network. International Journal of Engineering. (2013);26(5):465-72. doi.org/10.5829/idosi.ije.2013.26.05b.02
  15. Moragaspitiya C, Rajapakse J, Senadeera W, Ali I. Simulation of Dynamic Behaviour of a Biological Wastewater Treatment Plant in South East Queensland, Australia using Bio-Win Software. Engineering Journal. 2017;21(3):1-22. doi.org/10.4186/ej.2017.21.3.1
  16. Młynski D, Bugajski P, Młynska A. Application of the Mathematical Simulation Methods for the Assessment of the Wastewater Treatment Plant Operation Work Reliability. Water. 2019;11:873. doi.org/10.3390/w11050873
  17. Viswanathan MB, Raman DR, Rosentrater KA, Shanks BH. A Technoeconomic Platform for Early-Stage Process Design and Cost Estimation of Joint Fermentative-Catalytic Bioprocessing. Processes. 2020;8:229. doi.org/10.3390/pr8020229
  18. Canizales L, Rojas F, Pizarro CA, Caicedo-Ortega NH, Villegas-Torres MF. SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia. Processes. 2020;8:1180. doi.org/10.3390/pr8091180
  19. Ernst S, Garro OA, Winkler S, Venkataraman G, Langer R, Cooney CL, Sasisekharan R. Process Simulation for Recombinant Protein Production: Cost Estimation and Sensitivity Analysis for Heparinase I Expressed in Escherichia coli. Biotechnology and Bioengineering. 1997; 53(6): 575-82. doi.org/10.1002(SICI)1097-0290(19970320)53:6<575::AIDBIT5>3.0.CO;2-J
  20. Flora JRV, McAnally AS, Petrides D. Treatment plant instructional modules based on SuperPro Designer® v.2.7. Environmental Modelling & Software. 1999; 14: 69-80. doi.org/10.1016/S1364-8152(98)00059-0
  21. Kotoupas A, Rigas F, Chalaris M. Computer-aided process design, economic evaluation and environmental impact assessment for treatment of cheese whey wastewater. Desalination. 2007; 213: 238-52. doi.org/10.1016/j.desal.2006.03.611
  22. Lisichkov K, Kuvendziev S, Ljatifi M, Zhezhov G, Marinkovski M. Analysis of the actuivated sludge wastewater treatment process by application of a process simulator. Natura Montenegrina. 2013; 13(3-4): 995-1002.
  23. Singureanu C, Woinaroschy A. Simulation of Bardenpho wastewater treatment process for nitrogen removal using SuperPro Designer simulator. U.P.B. Sci. Bull., Series B. 2017; 79(4): 41-50.
  24. Barreto SI. Uso de la simulación con SuperPro Designer en las prácticas de laboratorio de tratamiento de agua y residuales. Transformación. 2017; 13(1): 130-38.
  25. Broberg K. Modelling of a sulfate reducing and metal recovery process, for application within treatment of industrial wastewater Simulation in SuperPro Designer v. 10.1 and Matlab R2014b (Master Thesis). Lund, Sweden: Lund University; 2019.
  26. Lok X, Chan YJ, Foo DCY. Simulation and optimisation of full-scale palm oil mill effluent (POME) treatment plant with biogas production. Journal of Water Process Engineering. 2020;38:101558. doi.org/10.1016/j.jwpe.2020.101558
  27. Ma R, Chong CH, Foo DCY. Design and Optimisation of Wastewater Treatment Plant for the Poultry Industry. MATEC Web of Conferences. 2021;333:12003. doi.org/10.1051/matecconf/202133312003
  28. Inayat A, Ahmed SF, Djavanroodi F, Al-Ali F, Alsallani M, Mangoosh S. Process Simulation and Optimization of Anaerobic Co-Digestion. Frontiers in Energy Research. 2021;9:764463. doi.org/10.3389/fenrg.2021.764463
  29. Chong JWR, Chan YJ, Chong S, Ho YC, Mohamad M, Tan WN, et al. Simulation and Optimisation of Integrated Anaerobic-Aerobic Bioreactor (IAAB) for the Treatment of Palm Oil Mill Effluent. Processes. 2021;9:1124. doi.org/10.3390/pr9071124
  30. Innocenzi V, Celso GM, Prisciandaro M. Techno-economic analysis of olive wastewater treatment with a closed water approach by integrated membrane processes and advanced oxidation processes. Water Reuse. 2021; 11(1): 122-35. doi.org/10.2166/wrd.2020.066
  31. Chemicalaid. Chemical Equation Balancer (online). Available from: https://es.intl.chemicalaid.com/tools/equationbalancer.php?equation=CrO3+%2B+Na2S2O5+%2B+H2SO4+%3D+Cr2%28SO4%293+%2B+NaSO4+%2B+H2O. Accessed on 25 oct 2021.
  32. Petkov K, Stefanova V, Stamenov L, Iliev P. An analytical study of the neutralization process of solutions with high concentration of Fe(III) ions. Journal of Chemical Technology and Metallurgy. 2017;52(2):242-51.
  33. Anco PM. Procedimiento para la separación del cromo hexavalente de efluentes mineros (undergraduate thesis). Lima, Perú: Universidad Nacional Mayor de San Marcos; 2004.
  34. Chemicalaid. Chemical Equation Balancer (online). Available from: https://es.intl.chemicalaid.com/tools/equationbalancer.php?equation=NaOH+%2B+H2SO4+%3D+Na2SO4+%2B+H2O. Accessed on 25 oct 2021.
  35. Chemicalaid. Chemical Equation Balancer (online). Available from: https://en.intl.chemicalaid.com/tools/equationbalancer.php?equation=FeCl3+%2B+Cr%28OH%293+%3D+Fe%28OH%293+%2B+CrCl3. Accessed on 25 oct 2021.
  36. Lee CS, Chong MF, Binner E, Gomes R, Robinson J. Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design. 2018; 132: 358-69. doi.org/10.1016/j.cherd.2018.01.050
  37. Chemanalyst. Pricing Data (online). Available from: https://www.chemanalyst.com/Pricing-data/. Accessed on 30 oct 2021. https://www.chemanalyst.com/Pricingdata/
  38. ICIS. (2021). Chemicals Cost (online). Available from: https://www.icis.com/explore/chemicals/channel-info-chemicals-a-z/. Accessed on 30 oct 2021.
  39. Brown T. Engineering Economics and Economic Design for Process Engineers. USA: CRC Press; 2006.
  40. Green DW, Southard MZ. Perry's Chemical Engineers' Handbook. 9 ed. USA: McGraw-Hill; 2019.
  41. Sinnott R, Towler G. Chemical Engineering Design. 6 ed. United Kingdom: Butterworth-Heinemann; 2020.
  42. MATCHE. Chemical Equipment Cost (online). Available from: www.matche.com. Accessed on 12 nov 2021.
  43. Jenkins S. Economic Indicators. Chemical Engineering. 2021; 18(12): 112.
  44. Baca G. Evaluación de proyectos. 6ta ed. Mexico: McGraw-Hill/Interamericana Editores S.A. de C.V.; 2010.
  45. Meza JJ. Evaluación financiera de proyectos. 3 ed. Colombia: Ecoe Ediciones; 2013.