Vol. 37 Núm. 1 (2024): Revista ION
Artículos

Simulación y diseño conceptual de un proceso de producción de dl-metionina por la ruta de síntesis química

Amaury Pérez Sánchez
Universidad de Camagüey
Arlette González Abad
Universidad de Camagüey
Amanda Acosta Solares
Universidad Central de Las Villas
Elizabeth Ranero González
Universidad de Camagüey
Eddy Javier Pérez Sánchez
Empresa Servicios Automotores S.A

Publicado 2024-05-08

Palabras clave

  • Dl-metionina,
  • Simulación de procesos,
  • Indicadores de rentabilidad,
  • SuperPro Designer,
  • Evaluación técnico-económica

Cómo citar

Pérez Sánchez, A., González Abad, . A. de la C. ., Acosta Solares, A. ., Ranero González, E. ., & Pérez Sánchez, E. J. . (2024). Simulación y diseño conceptual de un proceso de producción de dl-metionina por la ruta de síntesis química. Revista ION, 37(1), 65–81. https://doi.org/10.18273/revion.v37n1-2024005

Resumen

La metionina es uno de los dos aminoácidos que contienen azufre requeridos en la dieta de humanos, otros mamíferos y especies aviares, mientras que la mayoría de la metionina producida es usada como aditivos de alimento animal, especialmente en la producción de ganado y el mercado avícola. En este artículo, se llevó a cabo la evaluación técnico-económica y diseño conceptual de un proceso de producción de dl-metionina de grado alimenticio a escala industrial usando el simulador SuperPro Designer. La planta fue diseñada para producir 109 t de dl-metionina por año a través de la ruta de la síntesis química. La inversión total de capital y el costo anual de operación de la planta propuesta fueron de USD $ 8,282 millones y USD $ 1,323 millones, respectivamente, mientras que el valor actual neto, la tasa interna de retorno y el periodo de recuperación de la inversión del proyecto fueron de USD $ 4,436 millones, 20,33 % y 4,74 años, respectivamente. Los hallazgos indicaron que el proceso de producción propuesto es factible and rentable para un precio de venta de la dl-metionina de USD $ 35/kg. El modelo de simulación innovador obtenido en este trabajo puede usarse para estudios de optimización posteriores, así como también para incrementar la productividad y rentabilidad de la planta propuesta.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Zhou H, Wu W, Niu K, Xu Y, Liu Z, Zheng Y. Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech. 2019;9(96):1-11. https://doi.org/10.1007/s13205-019-1609-8
  2. Willke T. Methionine production-a critical review. Appl Microbiol Biotechnol. 2014;98:9893-9914. https://doi.org/10.1007/s00253-014-6156-y
  3. Reports and Data. Materials and Chemicals - Methionine Market April 2023 (Online). Reports and Data. Available from: https://www.reportsanddata.com/report-detail/methioninemarket. Accessed on October 8th, 2023.
  4. Data Bridge Market Research. Global Methionine Market – Industry Trends and Forecast to 2030 (Online). Data Bridge Market Research. Available from: https://www.databridgemarketresearch.com/reports/global-methionine-market. Accessed on October 8th, 2023.
  5. Xiong N, Yu R, Chen T, Xue Y-P, Liu Z-Q, Zheng Y-G. Separation and purification of L-methionine from E. coli fermentation broth by macroporous resin chromatography. Journal of Chromatography B. 2019;1110-1111:108-15.
  6. https://doi.org/10.1016/j.jchromb.2019.02.016
  7. Mohany NAM, Totti A, Naylor KR, Janovjak H. Microbial methionine transporters and biotechnological applications. Applied Microbiology and Biotechnology.2021;105:3919-29. https://doi.org/10.1007/s00253-021-11307-w
  8. Mari JU, Aliyu A, Nasiru S, Muhammad AB, Ibrahim AA, Magaji H, et al. Methionine Production and Optimization Using Bacillus cereus Isolated From Soil. Scholars International Journal of Biochemistry. 2022;5(7):95-102. https://doi.org/10.36348/sijb.2022.v05i07.001
  9. Krömer JO, Wittmann C, Schröder H, Heinzle E. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metabolic Engineering. 2006;8:353–69. https://doi.org/10.1016/j.ymben.2006.02.001
  10. Anakwenze VN, Ezemba CC, Ekwealor IA. Optimization of Fermentation Conditions of Bacillus thuringiensis EC1 for Enhanced Methionine Production. Advances in Microbiology. 2014;4:344-52.
  11. Ranjan AP, Nayak R, Gomes J. A model for L-methionine production describing oxygen–productivity relationship. J Chem Technol Biotechnol. 2009;84:662-74. https://doi.org/10.1002/jctb.2097
  12. Li Z, Liu Q, Sun J, Sun J, Li M, Zhang Y, et al. Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli. Biotechnology for Biofuels and Bioproducts. 2023;16(101):1-15.
  13. Wang H, Li Y, Che Y, Yang D, Wang Q, Yang H, et al. Production of L-Methionine from 3-Methylthiopropionaldehyde and O-Acetylhomoserine by Catalysis of the Yeast O-Acetylhomoserine Sulfhydrylase. Journal of Agricultural and Food Chemistry. 2021;69:7932-7. https://doi.org/10.1021/acs.jafc.1c02419
  14. Mai NL, Koo Y-M. Enhanced enzyme-catalyzed synthesis of L-methionine with ionic liquid additives. Process Biochemistry. 2019;77:31-6. https://doi.org/10.1016/j.procbio.2018.11.020
  15. Gomes J, Kumar D. Production of l-methionine by submerged fermentation: A review. Enzyme and Microbial Technology. 2005;37:3-18. https://doi.org/10.1016/j.enzmictec.2005.02.008
  16. Kumar D, Gomes J. Methionine production by fermentation. Biotechnology Advances. 2005;23:41-61. https://doi.org/10.1016/j.biotechadv.2004.08.005
  17. Reershemius HK. Production of L-methionine with Corynebacterium glutamicum (PhD thesis). Lower Saxony, Germany: Technical University of Braunschweig; 2008.
  18. Intratec Solutions LLC. D,L-Methionine Production via the Carbonate Process. Chemical Engineering. 2014;121(11):38.
  19. Guedes PHPS, Luz RF, Cavalcante RM, Young AF. Process simulation for technical and economic evaluation of acrolein and glycerol carbonate production from glycerol. Biomass and Bioenergy. 2023;168:106659. https://doi.org/10.1016/j.biombioe.2022.106659
  20. ChemAnalyst. Ammonium carbonate: Price Trend and Forecast (Online). ChemAnalyst. Available from: https://www.chemanalyst.com/Pricing-data/ammonium-carbonate-1290. Accessed on October 3rd, 2023.
  21. IndexBox. Hydrogen Cyanide (Online). IndexBox. Available from: https://www.indexbox.io/search/price-for-hydrogencyanide-hydrocyanic-acid-the-united-states/. Accessed on October 4th, 2023.
  22. ChemAnalyst. Methanol Price Trend and Forecast (Online). ChemAnalyst. Available from: https://www.chemanalyst.com/Pricingdata/methanol-1. Accessed on October 3rd, 2023.
  23. ChemicalBook. Methyl mercaptan (Online). ChemicalBook. Available from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7106671.htm. Accessed on October 5th, 2023.
  24. ChemAnalyst. Caustic Soda Price Trend and Forecast (Online). ChemAnalyst. Available from: https://www.chemanalyst.com/Pricingdata/caustic-soda-3. Accessed on October 3rd, 2023.
  25. ChemAnalyst. Hydrochloric acid Price Trend and Forecast (Online). ChemAnalyst. Available from: https://www.chemanalyst.com/Pricing-data/hydrochloric-acid-61. Accessed on October 3rd, 2023.
  26. Harrison RG, Todd PW, Rudge SR, Petrides DP. Bioseparations science and engineering. 2nd ed. New York, USA: Oxford University Press; 2015.
  27. Silla H. Chemical Process Engineering. New York, USA: Marcel Dekker, Inc; 2003.
  28. Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers. 5th ed. New York, USA: McGraw-Hill; 2003.
  29. Brown T. Engineering Economics and Economic Design for Process Engineers. Boca Raton, USA: CRC Press; 2006.
  30. MatChe. Chemical Equipment Cost 2014 (Online). MatChe. Available from: www.matche.com. Accessed on October 10, 2023.
  31. Sinnott R, Towler G. Chemical Engineering Design. 6th ed. Oxford, United Kingdom: Butterworth-Heinemann; 2020.
  32. Jenkins S. Economic Indicators. Chemical Engineering. 2023;130(10):48.
  33. Couper JR, Penney WR, Fair JR, Walas SM. Chemical Process Equipment - Selection and Design. 3rd ed. Oxford, UK: Butterworth-Heinemann; 2012.
  34. Green DW, Southard MZ. Perry’s Chemical Engineers’ Handbook. 9th ed. New York, USA: McGraw-Hill Education; 2019.
  35. Gebremariam SN, Marchetti JM. Process simulation and techno-economic performance evaluation of alternative technologies for biodiesel production from low value non-edible oil. Biomass and Bioenergy. 2021;149:106102. https://doi.org/10.1016/j.biombioe.2021.106102
  36. Petrides D. Bioprocess Design and Economics. New Jersey, USA: Intelligen, Inc; 2015.
  37. FasterCapital. Los desafíos de la sostenibilidad de costos en diferentes industrias y regiones (Online). Available from: https://fastercapital.com/es/tema/los-desaf%C3%ADos-de-la-sostenibilidad-de-costos-en-diferentes-industrias-y-regiones.html. Accessed on April 30th, 2024.