Vol. 36 Núm. 2 (2023): Revista ION
Artículos

Diseño de una torre de bandeja perforada para la absorción de amoniaco

Amaury Pérez Sánchez
Universidad de Camagüey
Maria Isabel La Rosa Veliz
Universidad de Camagüey
Zamira María Sarduy Rodríguez
Universidad de Camagüey,
Eddy Javier Pérez Sánchez
Empresa Servicios Automotores S.A
Elizabeth Ranero Gonzalez
Universidad de Camagüey

Publicado 2023-06-30

Palabras clave

  • Absorción,
  • Amoníaco,
  • Eficiencia de bandeja de Murphree,
  • Caída de presión,
  • Columna de bandeja perforada

Cómo citar

Pérez Sánchez, A., La Rosa Veliz, M. I. ., Sarduy Rodríguez, Z. M. ., Pérez Sánchez, E. J. ., & Ranero Gonzalez, E. . (2023). Diseño de una torre de bandeja perforada para la absorción de amoniaco. Revista ION, 36(2), 63–82. https://doi.org/10.18273/revion.v36n2-2023005

Resumen

Las columnas de bandejas son esencialmente cilindros verticales en los cuales el líquido y el gas son puestos en contacto en operación por etapas en platos, y son útiles para procesos de absorción destilación. En el presente artículo se llevó a cabo el diseño de una columna de bandejas perforadas para la absorción física de amoníaco usando agua como solvente. Los valores calculados del  diámetro de la columna, caída de presión del gas por bandeja, caudal másico de arrastre y la eficiencia de la bandeja de Murphree corregida para arrastre fueron de 0,962 m; 0,683 kPa/bandeja; 0,102 kg/s y 0,796 respectivamente. Los valores calculados de tanto la caída de presión del gas por bandeja y el caudal másico de arrastre son menores que los límites establecidos por el proceso; por tanto, la columna de bandejas perforadas diseñada puede ser empleada satisfactoriamente para el servicio de transferencia de masa requerido.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Icarus. Towers, Columns. En: ICARUS Reference. USA: ICARUS Corporation; 1998. p. 8.3-18.
  2. Haan AB, Eral HB, Schuur B. Absorption and Stripping. En: Industrial Separation Processes-Fundamentals. 2nd ed. Germany: Walter de Gruyter GmbH; 2020. p. 57-79.
  3. Benitez J. Principles and modern applications of mass transfer operations. 2nd ed. USA: John Wiley & Sons; 2009.
  4. Treybal RE. Mass-transfer operations. 3rd ed. USA: McGraw-Hill; 1980.
  5. Dutta BK. Principles of Mass Transfer and Separation Processes. India: PHI Learning Private Limited; 2009.
  6. Theodore L, Ricci F. Mass Transfer Operations for the Practicing Engineer. USA: John Wiley & Sons; 2010.
  7. Sinnott R, Towler G. Chemical Engineering Design. 6th ed. United Kingdom: ButterworthHeinemann; 2020.
  8. Tang M, Zhang S, Wang D, Liu Y, Zhang Y, Wang H, Yang K. Hydrodynamics of the tridimensional rotational flow sieve tray in a countercurrent gas-liquid column. Chemical Engineering & Processing: Process Intensification. 2019;142:107568. doi.org/10.1016/j.cep.2019.107568
  9. Engel V. How to... Sieve Tray. Part 1. How to design and optimize Sieve Trays. Germany: WelChem Process Technology; 2020.
  10. Kister HZ. Distillation Design. USA: McGrawHill; 1992.
  11. Riese J, Grünewald M. Flexibility for Absorption and Distillation Columns. Chemical Engineering Transactions. 2018;68:787-92.
  12. Economopoulos AP. Computer design of sieve trays and tray columns. Chemical Engineering. 1978;85(27):109-20.
  13. Diao YF, Zheng XY, He BS, Chen CH, Xu XC. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion and Management. 2004;45:2283-96. doi.org/10.1016/j.enconman.2003.10.011
  14. Hüpen B, Kenig EY. Rigorous modelling of NOx absorption in tray and packed columns. Chemical Engineering Science. 2005;60:6462–71.
  15. Alrayah RAAA. Design and Cascade Control of a Sieve Tray Absorption Column (Master thesis). Wad Medani, Sudan: University of Gezira; 2013.
  16. Almoslh A, Alobaid F, Heinze C, Epple B. Experimental Study of the Influence of Gas Flow Rate on Hydrodynamic Characteristics of Sieve Trays and Their Effect on CO2 Absorption. Applied Sciences. 2021;11:8. doi.org/10.3390/app112210708
  17. Attarakih M, Abu-Khader M, Bart HJ. Dynamic analysis and control of sieve tray gas absorption column using MATLAB and SIMULINK. Applied Soft Computing. 2013;13:1152-69. doi.org/10.1016/j.asoc.2012.10.011
  18. Baniadam M, Fathikalajahi J, Rahimpour MR. Incorporation of Eulerian–Eulerian CFD framework in mathematical modeling of chemical absorption of acid gases into methyl diethanol amine on sieve trays. Chemical Engineering Journal. 2009;151:286-94. doi.org/10.1016/j.cej.2009.03.004
  19. Rafagnim NZ, Barbieri MR, Noriler D, Meier HF, Silva MKd. Euler–Euler model for CO2-MEA reactive absorptionon a sievetray. Chemical Engineering Research and Design. 2021;170:201-12. doi.org/10.1016/j.cherd.2021.03.033
  20. Vishwakarma V, Haq SA, Schleicher E, Schubert M, Hampela U. Experimental analysis of the hydrodynamic performance of an industrial-scale cross-flow sieve tray. Chemical Engineering Research and Design. 2021;174:294–306. doi.org/10.1016/j.cherd.2021.07.026
  21. Uys EC, Burger AJ, Preez LJD, Knoetze JH. The influence of gas physical properties onentrainment inside a sieve tray column. Chemical Engineering Research and Design. 2015;104:429-39. doi.org/10.1016/j.cherd.2015.08.031
  22. Pudjiastuti L, Widjaja T, Iskandar KK, Sahid F, Nurkhamidah S, Altway A, Putra AP. Modelling and simulation of multicomponent acetonebutanol-ethanol distillation process in a sieve tray column. Heliyon. 2021;7:e06641. doi.org/10.1016/j.heliyon.2021.e06641
  23. May MM, Gómez FI, Rodríguez MA. Rigorous modelling and simulation of the mass transfer on the trays of a pilot scale distillation column. 30th European Symposium on Computer Aided Process Engineering (ESCAPE30); 2020 may 24-27; Milano, Italy. p. 13-18.
  24. Gutiérrez EE, Salvagnini WM, Santos ME. Comparison between the design of experiments and simulation in the threephase distillation in a sieve tray column for glycerine dehydration. Chemical Engineering Research and Design. 2013;91:1186-1202. doi.org/10.1016/j.cherd.2013.01.011
  25. Mahdipoor HR, Shirvani M, Nasr MRJ, Shakiba S. Rigorous dynamic simulation of an industrial tray column, considered liquid flow regime and efficiency of trays. Trans IChemE, Part A, Chemical Engineering Research and Design. 2007;85(A8):1101-11. doi.org/10.1205/cherd05035
  26. Zavaleta-Aguilar EW, Simões-Moreira JR. Thermal design of a tray-type distillation column of an ammonia/water absorption refrigeration cycle. Applied Thermal Engineering. 2012;41:52-60. doi.org/10.1016/j.applthermaleng.2011.12.009
  27. Rodríguez MA, Gómez FI, Segovia JG, Uribe AR. Mechanical design and hydrodynamic analysis of sieve trays in a dividing wall column for a hydrocarbon mixture. Chemical Engineering and Processing: Process Intensification. 2015;97:55-65. doi.org/10.1016/j.applthermaleng.2011.12.009
  28. Nisola GM, Cho E, Orata JD, Redillas MCFR, Farnazo DMC, Tuuguu E, et al. NH3 gas absorption and bio-oxidation in a single bioscrubber system. Process Biochemistry. 2009;44(2):161-67. doi.org/10.1016/j.procbio.2008.10.004
  29. Renard JJ, Calidonna SE, Henley MV. Fate of ammonia in the atmosphere-a review for applicability to hazardous releases. Journal of Hazardous Materials. 2004;108(1-2):29-60. doi.org/10.1016/j.jhazmat.2004.01.015
  30. Piché S, Larachi F, Grandjean BPA. Improved liquid hold-up correlation for randomly packed towers. Trans IChemE Part A. 2001;79(1):71-80. doi.org/10.1205/026387601528543
  31. Sieres J, Fernández-Seara J, Uhía FJ. Experimental analysis of ammonia–water rectification in absorption systems with the 10 mm metal Pall ring packing. International Journal of Refrigeration. 2008;31(2):270-8. doi.org/10.1016/j.ijrefrig.2007.05.009
  32. Green DW, Southard MZ. Perry’s Chemical Engineers’ Handbook. 9th ed. USA: McGrawHill; 2019.
  33. Bennett DL, Watson DN, Wiescinski MA. New Correlation for Sieve-Tray Point Efficiency, Entrainment, and Section Efficiency. AIChE Journal. 1997;43(6):1611-26. doi.org/10.1002/aic.690430625
  34. Lockett MJ. Distillation Tray Fundamentals. USA: Cambridge University Press; 1986.