Vol. 36 Núm. 1 (2023): Revista ION
Artículos

Evaluación económica y ambiental de las tecnologías de utilización del biogás y perspectivas del análisis multicriterio

Jean Agustín Velásquez-Piñas
Universidade Federal de Uberlândia
Orly Denisse Calle-Roalcaba
Universidade Federal de Uberlândia
Luis Ramiro Miramontes-Martínez
Universidad Autónoma de Nuevo León
Leonardo Alexis Alonso Gómez
Universidad de los Llanos

Publicado 2023-02-28

Palabras clave

  • Digestión anaerobia,
  • Residuos orgánicos,
  • Análisis de ciclo de vida,
  • Valor actual neto

Cómo citar

Velásquez-Piñas, J. A. ., Calle-Roalcaba, O. D. ., Miramontes-Martínez, L. R. ., & Alonso Gómez, L. A. (2023). Evaluación económica y ambiental de las tecnologías de utilización del biogás y perspectivas del análisis multicriterio. Revista ION, 36(1), 29–47. https://doi.org/10.18273/revion.v36n1-2023003

Resumen

La tecnología de digestión anaerobia (DA) es un proceso implementado para producir biogás y biol mediante la gestión de residuos orgánicos. El biogás producido puede ser convertido en electricidad de origen renovable y el biol en biofertilizante. La adecuada comercialización de esta electricidad permite disminuir las emisiones de gases de efecto invernadero (EGEI) por la sustitución de electricidad de origen fósil y el biofertilizante puede disminuir el uso de fertilizantes nitrogenados basados en la urea. En Latinoamérica, la DA presenta retos operativos que limitan la comercialización de estos productos y comprometen la sostenibilidad de estos proyectos a escala industrial. En este trabajo se presenta un análisis crítico de las principales metodologías utilizadas para cuantificar la rentabilidad económica y ambiental de la DA, complementando con experiencias prácticas y teóricas en Latinoamérica. Las herramientas económicas analizadas fueron el valor actual neto (VAN), la tasa interna de retorno (TIR) y el periodo de recuperación de la inversión (PRI), los cuales mediante un análisis de los costos operativos y de capital, y los posibles ingresos por la reducción de EGEI, permiten cuantificar la viabilidad financiera de estos proyectos. Como criterio de desempeño ambiental se analizó la metodología de Análisis de Ciclo de Vida, la cual permite cuantificar todas las cargas ambientales evitadas por la DA. La información que reúne este trabajo ayuda significativamente a enriquecer la base de datos sobre el tratamiento de residuos orgánicos y ayudará a la toma de decisiones con respecto a los problemas ambientales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Rundlöf M, Smith H G, Birkhofer K. Effects of Organic Farming on Biodiversity. eLS. 2016:1–7. doi.org/10.1002/9780470015902.A0026342
  2. Alonso‐Gómez LA, Avila-Parrado P, Rodriguez-Rojas MP, Espinosa-Solares T. Potencial bioquímico de metano de las cáscaras de cacao en codigestión con estiércol bovino. RedBioLAC. 2020;4:113-118.
  3. Matheri AN, Mbohwa C, Belaid M, Seodigeng T, Ngila JC. Design Model Selection and Dimensioning of Anaerobic Digester for the OFMSW. In: Proceedings of the World Congress on Engineering and Computer Science Vol. 2; 2016 oct 19-21; San Francisco, USA. Lect. Notes Eng. Comput. Sci; 2016.
  4. Seadi TAl, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, et al. Biogas Handbook. University of Southern Denmark Esbjerg Niels, Bohrs Vej 9-10, DK-6700; 2008.
  5. Kulkarni I, Zang JW, Leandro WM, Parikh P, Adler I, Da Fonseca-Zang WA, et al. Closed-Loop Biodigesters on Small-Scale Farms in Low- and Middle-Income Countries: A Review. Water. 2021;13(19):2744. doi.org/10.3390/W13192744
  6. Samanez CP. Engenharia Econômica. São Paulo, Brasil: Pearson Prentice Hall; 2009.
  7. Gomes HP. Avaliação Econômica: Eficiência Energética. Brasil: Universidade Federal da Paraíba (UFPB); 2014.
  8. Albrecht FG, König DH, Baucks N, Dietrich RU. A Standardized Methodology for the Techno-Economic Evaluation of Alternative Fuels – A Case Study. Fuel. 2017;194:511–526. doi.org/10.1016/J.FUEL.2016.12.003
  9. Alonso-Gómez LA, Solarte-Toro JC, Bello-Pérez, LA, Cardona-Alzate CA. Performance Evaluation and Economic Analysis of the Bioethanol and Flour Production Using Rejected Unripe Plantain Fruits (Musa Paradisiaca L.) as Raw Material. Food Bioprod. Process. 2020;121:29–42. doi.org/10.1016/j.fbp.2020.01.005
  10. Joint Research Centre, Institute for Energy and Transport. Weidner E, Jakubcionis M, Vallei M, Sigfusson B, Jäger-Waldau A, Lacal Arántegui R, et al. Energy Technology Reference Indicator (ETRI) projections for 2010-2050. Luxemburgo: Publications Office of the European Union; 2014. doi.org/10.2790/057687
  11. Karellas S, Boukis I, Kontopoulos G. Development of an Investment Decision Tool for Biogas Production from Agricultural Waste. Renew. Sustain. Energy Rev. 2010;14(4):1273–1282. doi.org/10.1016/j.rser.2009.12.002
  12. Solarte-Toro JC, Rueda-Duran CA, Ortiz-Sanchez M, Cardona Alzate CA. A Comprehensive Review on the Economic Assessment of Biorefineries: The First Step towards Sustainable Biomass Conversion. Bioresour. Technol. Reports. 2021;15:100776. doi.org/10.1016/J.BITEB.2021.100776
  13. Garcia-Nunez JA, Rodriguez DT, Fontanilla CA, Ramirez NE, Silva Lora EE, Frear CS, et al. Evaluation of Alternatives for the Evolution of Palm Oil Mills into Biorefineries. Biomass and Bioenergy. 2016:95;310–329. doi.org/10.1016/J.BIOMBIOE.2016.05.020
  14. Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources. 2019;8(1):51. doi.org/10.3390/resources8010051
  15. UNFCCC. ACUERDO DE PARÍS. Paris, Francia: Naciones Unidas; 2015.
  16. Intergovernmental Panel on Climate Change - IPCC. Climate Change 2007: The Physical Science Basis. The Working Group I Contribution to the IPCC Fourth Assessment Report - AR4, 1st ed.; IPCC. 996p., 2007.
  17. Intergovernmental Panel on Climate Change - IPCC. Climate Change 2007: The Physical Science Basis. The Working Group I Contribution to the IPCC Fourth Assessment Report - AR4, Errata.; IPCC. pp.1-6, 2012.
  18. Valencia GE, Obregón LG, Cardenas YE. Multi-Objective Analysis of a CHP System Using Natural Gas and Biogas on the Prime Mover. Chem. Eng. Trans. 2018;65:313–318. doi.org/10.3303/CET1865053
  19. Agência Nacional de Energia Elétrica – ANEEL. Resolução Normativa No 687, de 24 de Novembro de 2015. Altera a Resolução Normativa no 482, de 17 de abril de 2012, e os Módulos 1 e 3 dos Procedimentos de Distribuição – PRODIST. Brasilia-DF: ANEEL; 2015.
  20. Agência Nacional de Energia Elétrica – ANEEL. Resolução Normativa No 482/2012. Brasil; 2012.
  21. Nielsen HB, Angelidaki I. Congestion of Manure and Industrial Organic Waste at Centralized Biogas Plants: Process Imbalances and Limitations. Water Sci. Technol. 2008;58(7):1521–1528. doi.org/10.2166/wst.2008.507
  22. Polifacio M, Murphy JD. Anaerobic Digestion in Ireland: Decision Support System. Dep. Civil, Struct. Environ. Eng. Cork Inst. Technol. Irel. 2007.
  23. Weiland P. Production and Energetic Use of Biogas from Energy Crops and Wastes in Germany. Appl. Biochem. Biotechnol. - Part A Enzym. Eng. Biotechnol. 2003;109(1–3):263–274. doi.org/10.1385/ABAB:109:1-3:263
  24. Pieper DH, Vilchez-Vargas R, Jáuregui R, Boon N, Roume H, Raport L, et al. The Full-Scale Anaerobic Digestion Microbiome Is Represented by Specific Marker Populations. Water Res. 2016;104:101–110. doi.org/10.1016/j.watres.2016.08.008
  25. Otuzalti MM, Perendeci NA. Modeling of Real Scale Waste Activated Sludge Anaerobic Digestion Process by Anaerobic Digestion Model 1 (ADM1). Int. J. Green Energy. 2018;15(7):454–464. doi.org/10.1080/15435075.2018.1479265
  26. Wang M, Chen S, Han Y, Chen L, Wang D. Responses of Soil Aggregates and Bacterial Communities to Soil-Pb Immobilization Induced by Biofertilizer. Chemosphere. 2019;220:828–836. doi.org/10.1016/J.CHEMOSPHERE.2018.12.214
  27. Cecchi F, Cavinato C. Smart Approaches to Food Waste Final Disposal. Int. J. Environ. Res. Public Health. 2019;16(16):2860. doi.org/10.3390/ijerph16162860
  28. Michailos S, Walker M, Moody A, Poggio D, Pourkashanian M. Biomethane Production Using an Integrated Anaerobic Digestion, Gasification and CO2 Biomethanation Process in a Real Waste Water Treatment Plant: A Techno-Economic Assessment. Energy Convers. Manag. 2020;209:112663. doi.org/10.1016/j.enconman.2020.112663
  29. Chao R, Sosa R, Pérez AA, Cruz E. A Study on Pig Wastewater Treatment with Low Cost Biodigesters. Livest. Res. Rural Dev. 2008;20:149.
  30. Lansing S, Víquez J, Martínez H, Botero R, Martin J. Quantifying Electricity Generation and Waste Transformations in a Low-Cost, Plug-Flow Anaerobic Digestion System. Ecol. Eng. 2008;34(4):332–348. doi.org/10.1016/j.ecoleng.2008.09.002
  31. Garfí M, Ferrer-Martí L, Perez I, Flotats X, Ferrer I. Codigestion of Cow and Guinea Pig Manure in Low-Cost Tubular Digesters at High Altitude. Ecol. Eng. 2011;37(12):2066–2070. doi.org/10.1016/j.ecoleng.2011.08.018
  32. Martí-Herrero J, Ceron M, Garcia R, Pracejus L, Alvarez R, Cipriano X. The Influence of Users’ Behavior on Biogas Production from Low Cost Tubular Digesters: A Technical and Socio-Cultural Field Analysis. Energy Sustain. Dev. 2015;27:73–83. doi.org/10.1016/j.esd.2015.05.003
  33. Ferrer I, Gamiz M, Almeida M, Ruiz A. Pilot Project of Biogas Production from Pig Manure and Urine Mixture at Ambient Temperature in Ventanilla (Lima, Peru). Waste Manag. 2009;29(1):168–173. doi.org/10.1016/j.wasman.2008.02.014
  34. Martí-Herrero J, Alvarez R, Cespedes R, Rojas MR, Conde V, Aliaga L, et al. Cow, Sheep and Llama Manure at Psychrophilic Anaerobic Co-Digestion with Low Cost Tubular Digesters in Cold Climate and High Altitude. Bioresour. Technol. 2015;181:238–246. doi.org/10.1016/j.biortech.2015.01.063
  35. Li L, Peng X, Wang X, Wu D. Anaerobic Digestion of Food Waste: A Review Focusing on Process Stability. Bioresour. Technol. 2018;248(174):20–28. doi.org/10.1016/j.biortech.2017.07.012
  36. Carballa M, Regueiro L, Lema JM. Microbial Management of Anaerobic Digestion: Exploiting the Microbiome-Functionality Nexus. Curr. Opin. Biotechnol. 2015;33:103–111. doi.org/10.1016/j.copbio.2015.01.008
  37. Wu D, Li L, Zhao X, Peng Y, Yang P, Peng X. Anaerobic Digestion: A Review on Process Monitoring. Renew. Sustain. Energy Rev. 2019;103:1–12. doi.org/10.1016/j.rser.2018.12.039
  38. Galván-Arzola U, Miramontes-Martínez LR, Escamilla-Alvarado C, Botello-Álvarez JE, Alcalá-Rodríguez MM, Valencia-Vázquez R, et al. Anaerobic Digestion of Agro-Industrial Waste: Anaerobic Lagoons in Latin America. Rev. Mex. Ing. Química. 2022;21(2):2680. doi.org/10.24275/rmiq/IA2680
  39. Gutierrez EC, Xia A, Murphy JD. Can Slurry Biogas Systems Be Cost Effective without Subsidy in Mexico? Renew. Energy. 2016;95:22–30. doi.org/10.1016/j.renene.2016.03.096
  40. SENER. Reporte de Ingeniería Tecnológica: Biocombustibles Gaseosos. México: Instituto Mexicano del Petroleo; 2018.
  41. Falconer RE, Haltas I, Varga L, Forbes PJ, Abdel-Aal M, Panayotov N. Anaerobic Digestion of Food Waste: Eliciting Sustainable Water-Energy-Food Nexus Practices with Agent Based Modelling and Visual Analytics. J. Clean. Prod. 2020;255:120060. doi.org/10.1016/j.jclepro.2020.120060
  42. Pérez-Camacho MN, Curry R, Cromie T. Life Cycle Environmental Impacts of Substituting Food Wastes for Traditional Anaerobic Digestion Feedstocks. Waste Manag. 2018;73:140–155. doi.org/10.1016/j.wasman.2017.12.023
  43. Moncada B. J, Aristizábal M. V, Cardona A. CA. Design Strategies for Sustainable Biorefineries. Biochem. Eng. J. 2016;116:122–134. doi.org/10.1016/J.BEJ.2016.06.009
  44. Reza B, Sadiq R, Hewage K. Sustainability Assessment of Flooring Systems in the City of Tehran: An AHP-Based Life Cycle Analysis. Constr. Build. Mater. 2011;25(4):2053–2066. doi.org/10.1016/j.conbuildmat.2010.11.041
  45. Jin Y, Chen T, Chen X, Yu Z. Life-Cycle Assessment of Energy Consumption and Environmental Impact of an Integrated Food Waste-Based Biogas Plant. Appl. Energy. 2015;151:227–236. doi.org/10.1016/J.APENERGY.2015.04.058
  46. GreenDelta. OopenLCA. Disponible en: https://www.openlca.org/software/ Acceso el 30 de julio 2021.
  47. Aziz NIHA, Hanafiah MM. Life Cycle Analysis of Biogas Production from Anaerobic Digestion of Palm Oil Mill Effluent. Renew. Energy. 2020;145:847–857. doi.org/10.1016/J.RENENE.2019.06.084
  48. Bartocci P, Zampilli M, Liberti F, Pistolesi V, Massoli S, Bidini G, et al. LCA Analysis of Food Waste Co-Digestion. Sci. Total Environ. 2020;709:136187. doi.org/10.1016/J.SCITOTENV.2019.136187
  49. Barrera EL, Rosa E, Spanjers H, Romero O, De Meester S, Dewulf, J. A Comparative Assessment of Anaerobic Digestion Power Plants as Alternative to Lagoons for Vinasse Treatment: Life Cycle Assessment and Exergy Analysis. J. Clean. Prod. 2016:113:459–471. doi.org/10.1016/J.JCLEPRO.2015.11.095
  50. Munasinghe M, Jayasinghe P, Deraniyagala Y, Matlaba VJ, Santos JFD, Maneschy MC, et al. Value–Supply Chain Analysis (VSCA) of Crude Palm Oil Production in Brazil, Focusing on Economic, Environmental and Social Sustainability. Sustain. Prod. Consum. 2019;17:161–175. doi.org/10.1016/j.spc.2018.10.001
  51. Cadena E, Rocca F, Gutierrez JA, Carvalho A. Social Life Cycle Assessment Methodology for Evaluating Production Process Design: Biorefinery Case Study. J. Clean. Prod. 2019;238:117718. doi.org/10.1016/J.JCLEPRO.2019.117718
  52. Cardona-Alzate CA, Moncada B. J, Aristizábal-Marulanda V. Social Analysis of Biorrefineries. In: BIOREFINERIES: design and analysis. Boca Raton, United States: CRC PRESS; 2018. doi.org/10.1201/9781315114088
  53. Ciroth A, Eisfeldt F. PSILCA-A Product Social Impact Life Cycle Assessment Database. Database Version 1.0. Green Delta; 2016.
  54. Velásquez Piñas JA, Venturini OJ, Silva Lora EE, del Olmo OA, Calle Roalcaba OD. An Economic Holistic Feasibility Assessment of Centralized and Decentralized Biogas Plants with Mono-Digestion and Co-Digestion Systems. Renew. Energy. 2019;139:40–51. doi.org/10.1016/j.renene.2019.02.053
  55. De Oliveira LGS, Negro SO. Contextual Structures and Interaction Dynamics in the Brazilian Biogas Innovation System. Renew. Sustain. Energy Rev. 2019;107:462–481. doi.org/10.1016/j.rser.2019.02.030
  56. Cerqueira PLW, Aisse MM. Custos de Processamento de Lodo Em Estações de Tratamento de Esgoto Com Reatores Anaeróbios de Manto de Lodo e Pós-Tratamento Aeróbio: Subsídios Para Estudos de Concepção. Eng. Sanit. e Ambient. 2021;26(2):251–262. doi.org/10.1590/S1413-415220190244
  57. Schelly C, Bessette D, Brosemer K, Gagnon V, Arola KL, Fiss A, et al. Energy Policy for Energy Sovereignty: Can Policy Tools Enhance Energy Sovereignty? Sol. Energy. 2020;205:109–112. doi.org/10.1016/j.solener.2020.05.056
  58. Brosemer K, Schelly C, Gagnon V, Arola KL, Pearce JM, Bessette D, et al. The Energy Crises Revealed by COVID : Intersections of Indigeneity, Inequity, and Health. Energy Res. Soc. Sci. 2020;68:101661. doi.org/10.1016/j.erss.2020.101661
  59. Nwokoagbara E, Olaleye AK, Wang M. Biodiesel from Microalgae: The Use of Multi-Criteria Decision Analysis for Strain Selection. Fuel. 2015;159:241–249. doi.org/10.1016/j.fuel.2015.06.074
  60. Rao B, Mane A, Rao AB, Sardeshpande V. Multi-Criteria Analysis of Alternative Biogas Technologies. Energy Procedia. 2014;54:292–301. doi.org/10.1016/j.egypro.2014.07.272
  61. Pohekar SD, Ramachandran M. Application of Multi-Criteria Decision Making to Sustainable Energy Planning - A Review. Renew. Sustain. Energy Rev. 2004;8(4):365–381. doi.org/10.1016/j.rser.2003.12.007
  62. Feiz R, Ammenberg J. Assessment of Feedstocks for Biogas Production, Part I—A Multi-Criteria Approach. Resour. Conserv. Recycl. 2017;122:373–387. doi.org/10.1016/j.resconrec.2017.01.019
  63. Madlener R, Henggeler C, Dias LC. Assessing the Performance of Biogas Plants with Multi-Criteria and Data Envelopment Analysis. Eur. J. Oper. Res. 2009;197(3):1084–1094. doi.org/10.1016/j.ejor.2007.12.051
  64. Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, Van Langenhove H. Multi Criteria Sustainability Assessment of Biogas Production in Kenya. Appl. Energy. 2012;93:496–506. doi.org/10.1016/j.apenergy.2011.12.020