Vol. 35 Núm. 2 (2022): Revista ION
Artículos

Gasificación Catalítica y Autotérmica de Residuos Biomásicos a Escala Banco: Construcción y Optimización.

Misael Cordoba Arroyo
Instituto de Investigaciones en catálisis y petroquímica
Liza Dosso
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)
Carlos Roman Vera
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)
Juan Carlos Casas Zapata
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)
Alfonso Enrique Ramírez Sanabria
Grupo de Catálisis, Departamento De Química, Universidad Del Cauca
Mariana Busto
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)
Juan Badano
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)

Publicado 2022-12-05

Palabras clave

  • Gasificacion,
  • Catálisis,
  • Alquitrán,
  • Biomasa,
  • Gas de síntesis

Cómo citar

Garcia Peña, L., Cordoba Arroyo, M., Dosso, L., Vera, C. R., Casas Zapata, J. C., Ramírez Sanabria, A. E. ., Busto, M., & Badano, J. (2022). Gasificación Catalítica y Autotérmica de Residuos Biomásicos a Escala Banco: Construcción y Optimización . Revista ION, 35(2), 83–99. https://doi.org/10.18273/revion.v35n2-2022007

Resumen

En este trabajo se construyó y optimizó un sistema de gasificación a escala banco de residuos biomásicos (aserrín de pino). El sistema consta de una unidad de alimentación (tolva y tornillo), un reactor autotérmico de lecho fluidizado y acondicionamiento de gases (ciclón y enfriamiento). En el reactor se evaluaron 2 catalizadores de bajo costo: un mineral natural (dolomita) y residuo de pirólisis comparados con un sólido inerte (arena). Los catalizadores y la biomasa fueron caracterizados por diferentes técnicas: ICP, BET, TGA, CHONS, entre otras. En la optimización del proceso se estudiaron diferentes parámetros: tamaño de partícula de biomasa, flujo másico de alimentación, agentes gasificante y perfiles de temperatura. Los ensayos mostraron un óptimo funcionamiento con un tamaño de biomasa en el rango de 0.50-0.85 mm, un flujo másico de alimentación de 0.840 kg/h y una relación de equivalencia entre mezcla de agentes gasificantes (aire y/o vapor de agua) y alimentación de 0.35-0.45 con temperaturas de equilibrio de 650 y 750ºC, respectivamente. Los catalizadores evaluados tuvieron una reducción de alquitrán entre 10-45% comparado con el inerte y valores superiores en la relación H2:CO y LHV. Los resultados mostraron que el sistema de gasificación autotérmico a escala banco construido, permite la transformación de la biomasa utilizando catalizadores de bajo/nulo costo, lo que lo hace atractivo desde el punto de vista ambiental y económico.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Akbarian A, Andooz A, Kowsari E, Ramakrishna S, Asgari S, Cheshme ZA. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresource Technology. 2022;362:127774.
  2. doi.org/10.1016/j.biortech.2022.127774
  3. Nanda S, Mohanty, P, Pant KK, Naik S, Kozinski JA, Dalai AK. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. BioEnergy Research. 2013;6(2):663-677. doi.org/10.1007/s12155-012-9281-4
  4. Basu P. Hydrothermal Gasification of Biomass. in Biomass Gasification and Pyrolysis. Boston: Academic Press; 2010. p. 229-267. doi.org/10.1016/C2009-0-20099-7
  5. Mai TP, Nguyen DQ. Gasification of Biomass. Biotechnological Applications of Biomass; 2021.
  6. Anis S, Zainal ZA. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews. 2011;15(5):2355-2377. doi.org/10.1016/j.rser.2011.02.018
  7. Mashiur Rahman M. Test and performance optimization of nozzle inclination angle and swirl combustor in a low-tar biomass gasifier: a biomass power generation system perspective. Carbon Resources Conversion. 2022;5(2):139-49. doi.org/10.1016/j.crcon.2022.01.002
  8. Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science. 2016;148(12):14-31. doi.org/10.1016/j.ces.2016.03.037
  9. Molino AS. Chianese, and D. Musmarra, Biomass gasification technology: The state of the art overview. Journal of
  10. Energy Chemistry. 2016;25(1):10-25. doi.org/10.1016/j.jechem.2015.11.005
  11. McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresource Technology. 2002;83(1):55-63. doi.org/10.1016/S0960-8524(01)00120-1
  12. Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy. 2000;18(6):489-497. doi.org/10.1016/S0961-9534(00)00009-X
  13. Hofbauer H, Materazzi M. 7 - Waste gasification processes for SNG production, in Substitute Natural Gas from Waste, M. Materazzi and P.U. Foscolo, Editors. 2019, Academic Press; 2019. p. 105-160.
  14. Zhang Z, Liu L, Shen B, Wu C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renewable and Sustainable Energy Reviews. 2018;94:1086-1109. doi.org/10.1016/j.rser.2018.07.010
  15. Cortazar M, Santamaria L, Lopez G, Alvarez J, Amutio M, Bilbao J, et al. Fe/ olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. Journal of Industrial and Engineering Chemistry, 2021;99:364-379. doi.org/10.1016/j.jiec.2021.04.046
  16. Rapagnà S, Virginie M, Gallucci K, Courson C, Di Marcello M, Kiennemann A, et al. Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions. Catalysis Today. 2011;176(1):163-168. doi.org/10.1016/j.cattod.2010.11.098
  17. Lin Q, Zhang S, Wang J, Yin H. Synthesis of modified charsupported Ni– Fe catalyst with hierarchical structure
  18. for catalytic cracking of biomass tar. Renewable Energy. 2021;174:188-198. doi.org/10.1016/j.renene.2021.04.084
  19. Galadima A, Masudi A, Muraza O. Catalyst development for tar reduction in biomass gasification: Recent progress and the way forward. Journal of Environmental Management. 2022;305:114274. doi.org/10.1016/j.jenvman.2021.114274
  20. Asadullah M, Ito S, Kunimori K, Yamada M, Tomishige K. Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis. 2002;208(2):255-259. doi.org/10.1006/jcat.2002.3575
  21. Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomass gasification. Fuel Processing Technology. 2001;73(3):155-173. doi.org/10.1016/S0378-3820(01)00208-9
  22. Virginie M, Courson C, Niznansky D, Chaoui N, Kiennemann A. Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental. 2010;101(1-2):90-100. doi.org/10.1016/j.apcatb.2010.09.011
  23. Zhang S, Chen Z, Zhang H, Wang Y, Xu X, Cheng L, et al. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts. Fuel Processing Technology. 2018;174:142-148. doi.org/10.1016/j.fuproc.2018.02.022
  24. Hu M, Laghari M, Cui B, Xiao B, Zhang B, Guo D. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy. 2018;145:228-237. doi.org/10.1016/j.energy.2017.12.096
  25. Chao L, Zhang C, Zhang L, Gholizadeh M, Hu X. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Waste Management. 2020;116:9-21. doi.org/10.1016/j.wasman.2020.07.045
  26. Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energy Conversion and Management. 2007;48(4):1132-1139. doi.org/10.1016/j.enconman.2006.10.014
  27. Jayathilake R, Rudra S. Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification. Energies. 2017;10(8):1232. doi.org/10.3390/en10081232
  28. James Rivas A, Yuan W, Boyette MD, Wang D. The Effect of Air Flow Rate and Biomass Type on the Performance of an Updraft Biomass Gasifier. BioResources, 2015;10(2):3615-3624. doi: 10.15376/biores.10.2.3615-3624
  29. Cerone N, Zimbardi F. Gasification of Agroresidues for Syngas Production. Energies. 2018;11(5):1280. doi.org/10.3390/en11051280
  30. Syred C, Fick W, Griffiths AJ, Syred N. Cyclone gasifier and cyclone combustor for the use of biomass derived gas in the operation of a small gas turbine in cogeneration plants. Fuel. 2004;83(17):2381-2392. doi.org/10.1016/j.fuel.2004.01.013
  31. Bhandari B. Handbook of Industrial Drying, Fourth Edition Edited by A. S. Mujumdar. Drying Technology. 2015;33(1):128-129.
  32. Garcia L, Cordoba M, Dosso L, Vera C, Busto M, Bandano J. Catalytic Steam Reforming of Biomass Tar Model Compounds with Low Cost Catalysts: Effect of Operation Conditions. Topics in Catalysis. 2022;65:1382-1393. doi.org/10.1007/s11244-022-01659-6
  33. Van de Kamp W, de Wild PJ, Knoef HAM, Neeft JPA, Kiel JHA. Tar measurement in biomass gasification, standardisation and supporting R&D. Research Centre of the Netherlands, report ECN-C—06-046, 2006.
  34. Brage C, Yu Q, Chen G, Sjöström K. Use of amino phase adsorbent for biomass tar sampling and separation. Fuel. 1997;76(2):137-142. doi.org/10.1016/S0016-2361(96)00199-8
  35. Israelsson M, Seemann M, Thunman H. Assessment of the solid-phase adsorption method for sampling biomass-derived tar in industrial environments. Energy & Fuels. 2013;27(12):7569-7578. doi.org/10.1021/ef401893j
  36. Babrauskas V. Ignition of Wood: A Review of the State of the Art. Journal of Fire Protection Engineering. 2002;12(3):163-189. doi.org/10.1177/10423910260620482
  37. Guan G, Kaewpanha M, Hao Xiaogang, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews. 2016;58:450-461. doi.org/10.1016/j.rser.2015.12.316
  38. Ram M, Mondal MK. Chapter 13 - Biomass gasification: a step toward cleaner fuel and chemicals, in Biofuels and Bioenergy. Gurunathan B, Sahadevan R, Zakaria ZA, Editors: Elsevier; 2022. p. 253-276. doi.org/10.1016/B978-0-323-85269-2.00008-3
  39. Liu Z, Zhang F, Liu H, Ba F, Yan S, Hu J. Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties. Bioresource Technology. 2018;249:983-991. doi.org/10.1016/j.biortech.2017.11.012
  40. Huang F, Jin S. Investigation of biomass (pine wood) gasification: Experiments and Aspen Plus simulation. Energy Science & Engineering. 2019;7(4):1178-1187. doi.org/10.1002/ese3.338
  41. Samprón I, de Diego LF, García-Labiano F, Izquier MT, Abad A, Adánez J. Biomass Chemical Looping Gasification of pine wood using a synthetic Fe2O3/Al2O3 oxygen carrier in a continuous unit. Bioresource Technology. 2020;316:123908. doi.org/10.1016/j.biortech.2020.123908
  42. Mehrotra R, Singh P, Kandpal H. Near infrared spectroscopic investigation of the thermal degradation of wood. Thermochimica Acta. 2010;507-508:60-65. doi.org/10.1016/j.tca.2010.05.001
  43. Wu Y, Yao C, Hu Y, Zhu X, Qing Y, Wu Q. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Materials. 2014;7(2):637-652. doi: 10.3390/ma7020637
  44. Liu Y, Zhao X, Li J, Ma D. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalination and Water Treatment. 2012;46(1-3):115-123. doi.org/10.1080/19443994.2012.677408
  45. Zhong X, Xie W, Wang N, Duan Y, Shang R, Huang L. Dolomite-Derived Ni-Based Catalysts with Fe Modification for Hydrogen Production via Auto-Thermal Reforming of Acetic Acid. Catalysts. 2016;6(6):85. doi.org/10.3390/catal6060085